第一章---Pytorch快速入门---第三节---pytorch中的数据操作和预处理

目录

1.高维数组

1.1 回归数据准备

1.2 分类数据准备

2. 图像数据

1.torchvision.datasets模块导入数据并预处理

2.从文件夹中导入数据并进行预处理


pytorch中torch.utils.data模块包含着一些常用的数据预处理的操作,主要用于数据的读取、切分、准备等。

常用数据操作类 功能
torch.utils.data.TensorDataset() 将数据处理为张量
torch.utils.data.ConcatDataset() 连接多个数据集
torch.utils.data.Subset() 根据索引获取数据集的子集
torch.utils.data.DataLoader() 数据加载器
torch.utils.data.random_split() 随机将数据集拆分为给定长度的非重叠数据集

使用这些类能够对高维数组、图像等各种类型的数据进行预处理,以便深度学习模型的使用,针对文本数据的处理可以使用torchtext库进行相关的数据准备操作。

1.高维数组

在很多情况下,我们需要从文本(如CSV文件)中读取高维数组数据,这类数据的特征是每个样本都有很多个预测变量(特征)和一个被预测变量(目标标签),特征通常是数值变量或者离散变量,被预测变量如果是连续的数值,则对应着回归问题,如果是离散变量,则对应分类问题。

1.1 回归数据准备

import torch
import numpy as np
import torch.utils.data as Data
from sklearn.datasets import load_boston,load_iris
#读取波士顿回归数据
boston_x,boston_y=load_boston(return_X_y=True)
print(boston_x.dtype)
print(boston_y.dtype)
"""
上面程序输出的数据集的特征和被预测变量都是numpy的64位浮点型数据。
而使用Pytorch时需要的数据是torch的32位浮点数的张量
需要将boston_x,boston_y转换为32位浮点型张量
"""
#将训练集转换为张量
train_x=torch.from_numpy(boston_x.astype(np.float32))
train_y=torch.from_numpy(boston_y.astype(np.float32))
"""
上面一段程序先将numpy数据转化为32位浮点型
然后使用torch.from_numpy()函数转化为张量
在训练全连接神经网络的时候,通常一次使用一个
batch的数据进行权重更新,torch.utils.data.DataLoader()
函数可以将输入的数据集(包含数据特征张量和被预测变量张量)
获得一个加载器,每次迭代可使用一个batch的数据
"""
#将训练集转化为张量之后,使用TensorDataset将train_x,train_y整合
train_data=Data.TensorDataset(train_x,train_y)
#定义一个数据加载器,将训练数据集进行批量处理
train_load=Data.DataLoader(
    dataset=train_data,#使用的数据集
    batch_size=64,#批处理的样本大小
    shuffle=True,#每次迭代前打乱数据
    num_workers=0#使用一个线程
)
print("======================")
#检查训练数据集的一个batch的样本的维度是否正确
for step,(b_x,b_y) in enumerate(train_load):
    if step>0:
        break
print("b_x.shape",b_x.shape)
print("b_y.shape",b_y.shape)
print("b_x.dtype",b_x.dtype)
print("b_y.dtype",b_y.dtype)

1.2 分类数据准备

分类数据与回归数据的不同之处在于,分类数据的被预测变量是离散型变量,所以在pytorch中默认的预测标签是64位有符号整型

import torch
import numpy as np
import torch.utils.data as Data
from sklearn.datasets import load_iris
iris_x,iris_y=load_iris(return_X_y=True)
print(iris_x.dtype)
print(iris_y.dtype)
"""
从上面程序输出可知,该数据集的特征数据(x)为64位浮点型,
标签y为32位整型。在pytorch构建网络中,x默认的数据格式是
torch.float32,所以转化为张量时,数据的特征要转化为32位浮点型
数据的类别标签y要转化为64位有符号整型,下面将x,y都转化为张量
"""
train_x=torch.from_numpy(iris_x.astype(np.float32))
train_y=torch.from_numpy(iris_y.astype(np.int64))
# print(train_x.dtype)
# print(train_y.dtype)
#将训练集转化为张量之后,使用TensorDataset将x,y整理到一块
train_data=Data.TensorDataset(train_x,train_y)
train_loader=Data.DataLoader(
    dataset=train_data,
    batch_size=10,#批处理样本大小
    shuffle=True,#每次迭代前打乱
    num_workers=0#使用两个线程
)
#检查一个训练集的batch样本维度是否正确
for step,(b_x,b_y) in enumerate(train_loader):
    if step>0:
        break
print("b_x.shape",b_x.shape)
print("b_y.shape",b_y.shape)
print("b_x.dtype",b_x.dtype)
print("b_y.dtype",b_y.dtype)

2. 图像数据

torchvision中的datasets模块包含多种常用的分类数据集下载及导入函数

数据集对应的类 描述
datasets.MNIST() 手写字体数据集
datasets.FashionMNIST() 衣服、鞋子、包等10类数据集
dataets.KMNIST() 一些文字的灰度数据
datasets.CocoCaptions() 用于图像标注的MS coco数据
datasets.CocoDetection() 用于检测的MS COCO数据
datasets.LSUN() 10个场景和20个目标分类数据集
datasets.CIFAR10() CIFAR10类数据集
datasets.CIFAR100() CIFAR100类数据集
datasets.STL10() 包含10类的分类数据集和大量的未标注数据
datasets.ImageFolder() 定义一个数据加载器从文件夹中读取数据

torchvision中的transforms模块可以针对每张图像进行预处理操作。

数据集对应的类 描述
transforms.Compose() 将多个transform组合起来使用
transforms.Scale() 按照指定图像尺寸对图像进行调整
transforms.CenterCrop() 将图像进行中心切割,得到给定的大小
transforms.RandomCrop() 切割中心点的位置随机选取
transforms.RandomHorizontalFlip() 图像随机水平翻转
transforms.RandomSizedCrop() 将给定的图像随机切割,然后再变换为给定的大小
transforms.Pad() 将图像所有边用给定的pad value 填充
transforms.ToTensor() 把一个取值范围是[0-255]的PIL图像或形状为[H,W,C]的数组,转换成形状为[C,H,W],取值范围是[0,1.0]的张量
transforms.Normalize() 将给定的图像进行规范化操作
transforms.Lambda(lam) 使用lam作为转化器,可自定义图像操作方式

1.torchvision.datasets模块导入数据并预处理

FashionMNIST数据集包含一个60000张28*28的灰度图片作为训练集,以及10000张28*28的灰度图片作测试集。数据共10类,分别是鞋子、连衣裙等服饰类的图像。


import torch
import torch.utils.data as Data
from torchvision.datasets import FashionMNIST
import torchvision.transforms  as transforms
from torchvision.datasets import ImageFolder

train_data=FashionMNIST(
    root="./data/FashionMNIST",#数据的路径
    train=True,#只使用训练数据集
    transform=transforms.ToTensor(),
    download=False#数据集已经离线下载,无需再次下载
)
train_loader=Data.DataLoader(
    dataset=train_data,
    batch_size=64,
    shuffle=True,
    num_workers=2
)
"""
上面的程序主要完成了以下功能:
(1)通过FashionMNIST()函数来导入数据。在该函数中root参数用于指定需要导
入数据的所在路径(如果指定路径下已经有该数据集,需要指定对应的参数download= False,
如果指定路径下没有该数据集,需要指定对应的参数download=True,将会自动下载数据)。
参数train的取值为Ture或者False,表示导入的数据是训练集(60000张图片)或测试集(10000张图片)。
参数transform用于指定数据集的变换,transform = transforms.ToTensor()表示将数据中的
像素值转换到0 ~1之间,并且将图像数据从形状[H,W ,C]转换成形状为[C,H,W]
(2)在数据导入后需要利用数据加载器DataLoader()将整个数据集切分为多个batch,
用于网络优化时利用梯度下降算法进行求解。在函数中dataset参数用于指定使用的数据集; 
batch__size参数指定每个batch使用的样本数量;shuffle = True表示从数据集中获取每个
批量图片时需先打乱数据;num_workers参数用于指定导人数据使用的进程数量(和并行处理相似)。
经过处理后该训练数据集包含938个batch
"""
#对训练集进行处理后,可以使用相同的方法对测试集进行处理
test_data=FashionMNIST(
    root="./data/FashionMNIST",
    train=False,
    download=False
)
#为数据添加一个通道维度,并且取值范围缩放到0-1之间
test_data_x=test_data.data.type(torch.FloatTensor) /255.0
test_data_x=torch.unsqueeze(test_data_x,dim=1)
test_data_y=test_data.targets
"""
上面的程序使用FashionMNIST()函数导入数据
使用train = False参数指定导入测试集
并将数据集中的像素值除以255.0,使像素值转化到0 ~1之间
再使用函数torch.unsqueeze()为数据添加一个通道即可得到测试数据集。
在test_data中使用test_data.data获取图像数据,
使用test_data.targets获取每个图像所对应的标签。

"""

2.从文件夹中导入数据并进行预处理

在torchvision的datasets模块中包含有ImageFolder()函数,它可以读取:在相同的文件路径下,每类数据都单独存放在不同的文件夹下。

#对训练集进行预处理
train_data_transforms=transforms.Compose(
    transforms.RandomResizedCrop(224),#随机长宽比裁剪224*224
    transforms.RandomHorizontalFlip(),#依据概率p=0.5水平翻转
    transforms.ToTensor(),#转化为将张量并归一化至[0-1]
    transforms.Normalize([0.485,0.456,0.406],
                         [0.229,0.224,0.225])
)
#读取图像
train_data_dir="data/imageData"
train_data=ImageFolder(train_data_dir,transform=train_data_transforms)
train_data_loader=Data.DataLoader(
    train_data,batch_size=4,shuffle=True,num_workers=2
)

你可能感兴趣的:(pytorch,深度学习,python)