基于TPS的STN模块-Robust Scene Text Recognition with Automatic Rectification
TPS:薄板样条插值(Thin plate splines)
STN:Spatial Transformer Network
RARE:Robust Scene Text Recognition with Automatic Rectification
本文详细解读RARE论文中的第三节,基于TPS的STN模块。
简介
场景文字检测的难点有很多,仿射变换是其中一种,Jaderberg[2]等人提出的STN通过预测仿射变换矩阵的方式对输入图像进行矫正。但是真实场景的不规则文本要复杂的多,可能包括扭曲,弧形排列等情况,这种方式的变换是传统的STN解决不了的,因此作者提出了基于TPS的STN。TPS非常强大的一点在于其可以近似所有和生物有关的形变。流程如下:
- localization network: 预测TPS矫正所需要的K个基准点(fiducial point)
- Grid Generator:基于基准点进行TPS变换,生成输出Feature Map的采样窗格(Grid)
- Sampler:每个Grid执行双线性插值
localization network
就是一个简单的CNN网络,最后两层使用全连接,最后一层全连接的输出为K*2,表示K个点的(x,y)坐标。最后一层的初始化作者探索了四种初始化方法,最后使用了(a)。其中(b)、(c)初始化性能较差,随机初始化不收敛。将最后一层全连接的data初始化为0,bias初始化为(a)图中的坐标。论文中K取了20。
class LocalizationNetwork(nn.Module):
""" Localization Network of RARE, which predicts C' (K x 2) from I (I_width x I_height) """
def __init__(self, F, I_channel_num):
super(LocalizationNetwork, self).__init__()
self.F = F
self.I_channel_num = I_channel_num
self.conv = nn.Sequential(
nn.Conv2d(in_channels=self.I_channel_num, out_channels=64, kernel_size=3, stride=1, padding=1,
bias=False), nn.BatchNorm2d(64), nn.ReLU(True),
nn.MaxPool2d(2, 2), # batch_size x 64 x I_height/2 x I_width/2
nn.Conv2d(64, 128, 3, 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(True),
nn.MaxPool2d(2, 2), # batch_size x 128 x I_height/4 x I_width/4
nn.Conv2d(128, 256, 3, 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(True),
nn.MaxPool2d(2, 2), # batch_size x 256 x I_height/8 x I_width/8
nn.Conv2d(256, 512, 3, 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(True),
nn.AdaptiveAvgPool2d(1) # batch_size x 512
)
self.localization_fc1 = nn.Sequential(nn.Linear(512, 256), nn.ReLU(True))
self.localization_fc2 = nn.Linear(256, self.F * 2)
# Init fc2 in LocalizationNetwork
self.localization_fc2.weight.data.fill_(0)
""" see RARE paper Fig. 6 (a) """
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
self.localization_fc2.bias.data = torch.from_numpy(initial_bias).float().view(-1)
Grid Generator
以下先不加证明给出TPS的插值函数(https://blog.csdn.net/caoniyadeniniang/article/details/78107057?isappinstalled=0&from=singlemessage):
已知点集,其中,求插入点的值
其中均为标量,表示当前插入的与点集中第个点的欧式距离,表示待插入点的坐标
- 创建基准点(base fiducial points),下图中右图的蓝色坐标点,归一化到(-1,1),由
_build_C
函数创建,也是上文中提到的点集,是一个常量。localization network最后一层全连接层输出的点即为下图中左图中的绿色的点。
- 求解,需要先求得,再求的逆矩阵(由
_build_inv_delta_C
求得),batch_C_prime_with_zeros
变量表示矩阵,batch_T
变量表示矩阵
-
得到矩阵后,我们已经可以将点集映射到点集,因此可以应用矩阵和点集 将Input Image 转换为Rectified Image。创建图像坐标,对于中的每一个点都可以在上找到一个与其对应的,使用即可求得。
- 创建,函数
_build_P
- 计算,函数
_build_P_hat
- 创建,函数
- 计算,变量
batch_P_prime
class GridGenerator(nn.Module):
""" Grid Generator of RARE, which produces P_prime by multipling T with P """
def __init__(self, F, I_r_size):
""" Generate P_hat and inv_delta_C for later """
super(GridGenerator, self).__init__()
self.eps = 1e-6
self.I_r_height, self.I_r_width = I_r_size
self.F = F
self.C = self._build_C(self.F) # F x 2
self.P = self._build_P(self.I_r_width, self.I_r_height)
## for multi-gpu, you need register buffer
self.register_buffer("inv_delta_C", torch.tensor(self._build_inv_delta_C(self.F, self.C)).float()) # F+3 x F+3
self.register_buffer("P_hat", torch.tensor(self._build_P_hat(self.F, self.C, self.P)).float()) # n x F+3
## for fine-tuning with different image width, you may use below instead of self.register_buffer
#self.inv_delta_C = torch.tensor(self._build_inv_delta_C(self.F, self.C)).float().cuda() # F+3 x F+3
#self.P_hat = torch.tensor(self._build_P_hat(self.F, self.C, self.P)).float().cuda() # n x F+3
def _build_C(self, F):
""" Return coordinates of fiducial points in I_r; C """
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
ctrl_pts_y_top = -1 * np.ones(int(F / 2))
ctrl_pts_y_bottom = np.ones(int(F / 2))
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
C = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
return C # F x 2
def _build_inv_delta_C(self, F, C):
""" Return inv_delta_C which is needed to calculate T """
hat_C = np.zeros((F, F), dtype=float) # F x F
for i in range(0, F):
for j in range(i, F):
r = np.linalg.norm(C[i] - C[j])
hat_C[i, j] = r
hat_C[j, i] = r
np.fill_diagonal(hat_C, 1)
hat_C = (hat_C ** 2) * np.log(hat_C)
# print(C.shape, hat_C.shape)
delta_C = np.concatenate( # F+3 x F+3
[
np.concatenate([np.ones((F, 1)), C, hat_C], axis=1), # F x F+3
np.concatenate([np.zeros((2, 3)), np.transpose(C)], axis=1), # 2 x F+3
np.concatenate([np.zeros((1, 3)), np.ones((1, F))], axis=1) # 1 x F+3
],
axis=0
)
inv_delta_C = np.linalg.inv(delta_C)
return inv_delta_C # F+3 x F+3
def _build_P(self, I_r_width, I_r_height):
I_r_grid_x = (np.arange(-I_r_width, I_r_width, 2) + 1.0) / I_r_width # self.I_r_width
I_r_grid_y = (np.arange(-I_r_height, I_r_height, 2) + 1.0) / I_r_height # self.I_r_height
P = np.stack( # self.I_r_width x self.I_r_height x 2
np.meshgrid(I_r_grid_x, I_r_grid_y),
axis=2
)
return P.reshape([-1, 2]) # n (= self.I_r_width x self.I_r_height) x 2
def _build_P_hat(self, F, C, P):
n = P.shape[0] # n (= self.I_r_width x self.I_r_height)
P_tile = np.tile(np.expand_dims(P, axis=1), (1, F, 1)) # n x 2 -> n x 1 x 2 -> n x F x 2
C_tile = np.expand_dims(C, axis=0) # 1 x F x 2
P_diff = P_tile - C_tile # n x F x 2
rbf_norm = np.linalg.norm(P_diff, ord=2, axis=2, keepdims=False) # n x F
rbf = np.multiply(np.square(rbf_norm), np.log(rbf_norm + self.eps)) # n x F
P_hat = np.concatenate([np.ones((n, 1)), P, rbf], axis=1)
return P_hat # n x F+3
def build_P_prime(self, batch_C_prime):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
""" Generate Grid from batch_C_prime [batch_size x F x 2] """
batch_size = batch_C_prime.size(0)
batch_inv_delta_C = self.inv_delta_C.repeat(batch_size, 1, 1)
batch_P_hat = self.P_hat.repeat(batch_size, 1, 1)
batch_C_prime_with_zeros = torch.cat((batch_C_prime, torch.zeros(
batch_size, 3, 2).float().to(device)), dim=1) # batch_size x F+3 x 2
batch_T = torch.bmm(batch_inv_delta_C, batch_C_prime_with_zeros) # batch_size x F+3 x 2
batch_P_prime = torch.bmm(batch_P_hat, batch_T) # batch_size x n x 2
return batch_P_prime # batch_size x n x 2
Sampler
STN中的反向插值算法,pytorch的实现函数为F.grid_sample
class TPS_SpatialTransformerNetwork(nn.Module):
""" Rectification Network of RARE, namely TPS based STN """
def __init__(self, F, I_size, I_r_size, scale=1, I_channel_num=1):
""" Based on RARE TPS
input:
batch_I: Batch Input Image [batch_size x I_channel_num x I_height x I_width]
I_size : (height, width) of the input image I
I_r_size : (height, width) of the rectified image I_r
I_channel_num : the number of channels of the input image I
output:
batch_I_r: rectified image [batch_size x I_channel_num x I_r_height x I_r_width]
"""
super(TPS_SpatialTransformerNetwork, self).__init__()
self.F = F
self.I_size = I_size
self.I_r_size = I_r_size # = (I_r_height, I_r_width)
self.I_channel_num = I_channel_num
self.LocalizationNetwork = LocalizationNetwork(self.F, self.I_channel_num, scale)
self.GridGenerator = GridGenerator(self.F, self.I_r_size)
def forward(self, batch_I):
batch_C_prime = self.LocalizationNetwork(batch_I) # batch_size x K x 2
build_P_prime = self.GridGenerator.build_P_prime(batch_C_prime) # batch_size x n (= I_r_width x I_r_height) x 2
build_P_prime_reshape = build_P_prime.reshape([build_P_prime.size(0), self.I_r_size[0], self.I_r_size[1], 2])
if torch.__version__ > "1.2.0":
batch_I_r = F.grid_sample(batch_I, build_P_prime_reshape, padding_mode='border', align_corners=True)
else:
batch_I_r = F.grid_sample(batch_I, build_P_prime_reshape, padding_mode='border')
return batch_I_r
效果示例
个人经验
- TPS网络可以使用比识别网络低一个数量级的学习率
- 若识别网络的backbone较小(shuffflenet、mobilenet等),需要使用ImageNet上预训练的模型才能较好收敛。如果使用初始化权重并且TPS和识别网络使用相同的学习率则无法收敛(目前不知道详细原因),使用resnet则没有这种问题。
- 若使用轻量级网络,可以对TPS网络的层通道进行scale(0.25、0.5),同时减少F的个数
- 在CCPD上进行车牌识别,加入TPS模块,准确率可以上升10-15个点。