DIP

常用的图像形态学操作包括膨胀、腐蚀、闭运算、开运算。

膨胀操作会扩大(粗化)图像中物体的轮廓,可以用来弥补(填充)物体间的孔洞,强化离散点,代价是导致物体的面积比原来的面积要大。

腐蚀操作会收缩(细化)图像中物体的轮廓,可以用来断开(分离)物体间的连接,消除离散点,代价是导致物体的面积比原来的面积要小。

闭运算是使用同一结构元对图像进行先膨胀后腐蚀的操作,可以用来弥合较窄的间断和细长的沟壑,消除物体间小的孔洞,填补轮廓线中的断裂。

开运算是使用同一结构元对图像进行先腐蚀后膨胀的操作,可以用来平滑物体的轮廓,断开物体间较窄的连接,消除物体边沿尖锐的突出部分。

需要说明的这些形态学操作所具有的效果是针对图像中物体属于高亮部分而言的,即前景物体的灰度高于背景图像。

这些形态学操作都涉及到一个关键的因子——结构元。结构元基本的形态是矩形、十字形或椭圆形(圆形)。

可以简单概括为结构元的形状是什么,就使得膨胀之后的轮廓的拐点处像什么。


先来定义一些基本符号和关系。

1.元素

设有一幅图象X,若点a在X的区域以内,则称a为X的元素,记作a∈X,如图6.1所示。

2.B包含于X

设有两幅图象B,X。对于B中所有的元素ai,都有ai∈X,则称B包含于(included in)X,记作B⊂X,如图6.2所示。

3.B击中X

设有两幅图象B,X。若存在这样一个点,它即是B的元素,又是X的元素,则称B击中(hit)X,记作B↑X,如图6.3所示。

4.B不击中X

设有两幅图象B,X。若不存在任何一个点,它即是B的元素,又是X的元素,即B和X的交集是空,则称B不击中(miss)X,记作B∩X=Ф;其中∩是集合运算相交的符号,Ф表示空集。如图6.4所示。

5.补集

设有一幅图象X,所有X区域以外的点构成的集合称为X的补集,记作X^c,如图6.5所示。显然,如果B∩X=Ф,则B在X的补集内,即B⊂X^c。

6.结构元素

设有两幅图象B,X。若X是被处理的对象,而B是用来处理X的,则称B为结构元素(structure element),又被形象地称做刷子。结构元素通常都是一些比较小的图象。

7.对称集

设有一幅图象B,将B中所有元素的坐标取反,即令(x,y)变成(-x,-y),所有这些点构成的新的集合称为B的对称集,记作Bv,如图6.6所示。

8.平移

设有一幅图象B,有一个点a(x0,y0),将B平移a后的结果是,把B中所有元素的横坐标加x0,纵坐标加y0,即令(x,y)变成(x+x0,y+y0),所有这些点构成的新的集合称为B的平移,记作Ba,如图6.7所示。

好了,介绍了这么多基本符号和关系,现在让我们应用这些符号和关系,看一下形态学的基本运算。

腐蚀

把结构元素B平移a后得到Ba,若Ba包含于X,我们记下这个a点,所有满足上述条件的a点组成的集合称做X被B腐蚀(Erosion)的结果。用公式表示为:E(X)={a| Ba⊂X}=X⊝B,如图6.8所示。

图6.8中X是被处理的对象,B是结构元素。不难知道,对于任意一个在阴影部分的点a,Ba包含于X,所以X被B腐蚀的结果就是那个阴影部分。阴影部分在X的范围之内,且比X小,就象X被剥掉了一层似的,这就是为什么叫腐蚀的原。

值得注意的是,上面的B是对称的,即B的对称集Bv=B,所以X被B腐蚀的结果和X被Bv腐蚀的结果是一样的。如果B不是对称的,让我们看看图6.9,就会发现X被B腐蚀的结果和X被Bv腐蚀的结果不同。

图6.8和图6.9都是示意图,让我们来看看实际上是怎样进行腐蚀运算的。

在图6.10中,左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B,那个标有origin的点是中心点,即当前处理元素的位置,我们在介绍模板操作时也有过类似的概念。腐蚀的方法是,拿B的中心点和X上的点一个一个地对比,如果B上的所有点都在X的范围内,则该点保留,否则将该点去掉;右边是腐蚀后的结果。可以看出,它仍在原来X的范围内,且比X包含的点要少,就象X被腐蚀掉了一层。


二值图像腐蚀与膨胀操作样例;https://blog.csdn.net/qq_25847123/article/details/73744575

你可能感兴趣的:(DIP)