知识笔记| 严格耦合波(RCWA)/傅里叶模态法(FMM)的学习

1.简介

严格耦合波分析法(Rigorous Coupled Wave Analysis, RCWA,)的名字是由Moharam和Gaylord最先提出来的,这种方法还有另外一个名字就是傅里叶模式法(Fourier Modal Method, FMM)。很多人认为这是两种方法,其实它们完全一种方法的不同叫法,清华大学的李立峰教授曾说

The name Fourier modal method is a better one because it reflects the essence of the method[1]

RCWA是处理周期性结构(尤其是衍射光栅)电磁场问题的一种非常有效的工具。该种方法就是将电磁场以及材料的介电常数进行傅里叶级数展开,之后,通过求解矩阵的特征值、特征向量的问题来求解麦克斯韦方程。相比于其它的数值计算方法,RCWA的计算速度很快,而且精度很高,它是一种严格的矢量计算方法,它的精度只依赖于展开谐波数的多少。

首先,介绍下RCWA求解光栅问题的大致步骤,

  1. 对求解的光栅进行分层,对每一层的电磁场进行傅里叶展开,写出光栅顶层(入射层)、底层(光栅基底)的电磁场表达式。
  2. 将光栅层的介电常数进行傅里叶级数展开,利用麦克斯韦方程推导出耦合波方程。
  3. 在不同层的交界处利用电磁场的边界条件,求解出每一层本征模式场的振幅系数,传播常数等物理参数。

2.求解过程示例

接下来,主要翻译文献[2]中利用RCWA对光栅的求解过程并将文中的推导过程加以补充(暂时以TE偏振入射光为例,就是电场矢量平行于Fig.1坐标所示的 y方向,其它入射场可能稍复杂,但是计算的本质都是一样的),希望对你理解该计算方法有所帮助。

Fig.1 光栅结构示意图

如上图,求解的光栅分为三个区域;为 区域 ,为区域,为光栅区域(不做序号标记)。区域的折射率是均匀、恒定的,分别为 ;光栅区域的介电常数是周期变化的,将该部分的介电常数进行傅里叶展开为 ,(eq.1)
其中, 为傅里叶展开的谐波数,为虚数单位;公式中的
, (eq.2)
(eq.2中 分别为光栅凸出、凹下部分材料的折射率,推导过程如下)

\begin{aligned} \varepsilon_{h} &=\frac{1}{\Lambda}\left[\int_{-\frac{\Lambda}{2}}^{-\frac{f \Lambda}{2}} n_{g r}^{2} e^{-\frac{2 j h \tau x}{\Lambda}} d x+\int_{-\frac{f \Lambda}{2}}^{\frac{f \Lambda}{2}} n_{r d}^{2} e^{-\frac{2 j h \pi x}{\Lambda}} d x+\int_{\frac{f \Lambda}{2}}^{\frac{\Lambda}{2}} n_{g r}^{2} e^{-\frac{2 j h \pi x}{\Lambda}} d x\right] \\ &=\frac{j}{2 h \pi}\left[n_{g r}^{2} e^{j h \pi f}-n_{g r}^{2} e^{j h \pi}+n_{r d}^{2} e^{-j h \pi f}-n_{r d}^{2} e^{j h \pi f}+n_{g r}^{2} e^{-j h \pi}-n_{g r}^{2} e^{-j h \pi f}\right] \\ &=\frac{j}{2 h \pi}\left(n_{r d}^{2}-n_{g r}^{2}\right)\left(e^{-j h \pi f}-e^{j h \pi f}\right) \\ &=\left(n_{r d}^{2}-n_{g r}^{2}\right) \frac{\sin \pi h f}{h \pi} \end{aligned}

我们考虑TE偏振光入射,入射角度为 ,入射电场可以表示为
, (eq.3)
区域和区域 的电场可以表示为
, (eq.4)
, (eq.5)
其中,代表衍射级次,分别为级反射、透射波的归一化振幅,为 方向的波矢分量
, (eq.6)
为 方向的波矢分量
k_{\mathcal{L}, z i}=\left\{\begin{array}{rr}{+k_{0}\left[n_{\ell}^{2}-\left(k_{x i} / k_{0}\right)^{2}\right]^{1 / 2}} & {k_{0} n_{\ell}>k_{x i}} \\ {-j k_{0}\left[\left(k_{x i} / k_{0}\right)-n_{\ell}^{2}\right]^{1 / 2}} & {k_{x i}>k_{0} n_{\ell}} \\ {\ell=\mathrm{I}, \mathrm{II}}\end{array}\right., (eq.7)
考虑完介电常数均匀、恒定的区域和区域后,我们再来分析光栅区域()的电磁场,光栅区域的电磁场的切向分量可以表示为如下形式
,(eq.8)
, (eq.9)
其中, 为波阻抗,电场与磁场振幅的比值就是该值[3],分别为 级衍射波电场与磁场的归一化振幅。针对光栅区域内的电磁场,接下来,主要用到两个频域的麦克斯韦方程组,在无电流源的情况下
, (eq.10)

将(eq.10)展开
\begin{array}{c}{\nabla \times \mathrm{E}=\left|\begin{array}{ccc}{x} & {y} & {z} \\ {\frac{\partial}{\partial x}} & {\frac{\partial}{\partial y}} & {\frac{\partial}{\partial z}} \\ {E_{x}} & {E_{y}} & {E_{z}}\end{array}\right|=\left(\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}\right) x+\left(\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}\right) y+\left(\frac{\partial E_{x}}{\partial y}-\frac{\partial E_{y}}{\partial x}\right) z} \\ {} {=j \omega \mu\left(\mathrm{H}_{\mathrm{x}}+H_{y}+H_{z}\right)}\end{array}

,(eq.11)

将(eq.11)展开
\begin{array}{c}{\nabla \times \mathrm{H}=\left|\begin{array}{ccc}{x} & {y} & {z} \\ {\frac{\partial}{\partial x}} & {\frac{\partial}{\partial y}} & {\frac{\partial}{\partial z}} \\ {H_{x}} & {H_{y}} & {H_{z}}\end{array}\right|=\left(\frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}\right) \mathrm{x}+\left(\frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}\right) y+\left(\frac{\partial H_{x}}{\partial y}-\frac{\partial H_{y}}{\partial x}\right) z} \\ {} {=-\mathrm{j} \omega \varepsilon\left(\mathrm{E}_{\mathrm{x}}+E_{y}+E_{z}\right)}\end{array}

在讨论TE偏振光入射的情况下,光栅区域的切向电磁场 满足麦克斯韦方程组,根据eq.10和eq.11得
, (eq.12)
, (eq.13)
根据eq.10,有
, (eq.14)
将eq.8和eq.9代入eq.12和eq.13并利用eq.14消去 ,得到耦合波方程
,(eq.15)
,(eq.16)
eq.15和eq.16的耦合波方程的推导如下

将eq.8和eq.9代入eq.12
\begin{aligned} \sum_{i} \frac{\partial S_{y i}(z)}{\partial z} \exp \left(-j k_{x i} x\right) &=w \mu_{0} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \sum_{i} U_{x i} \exp \left(-j k_{x i} x\right) \\ &=w \sqrt{\mu_{0} \varepsilon_{0}} \sum_{i} U_{x i} \exp \left(-j k_{x i} x\right) \\ &=k_{0} \sum_{i} U_{x i} \exp \left(-j k_{x i} x\right) \\ \Rightarrow \quad \frac{\partial S_{y i}(z)}{\partial z}=k_{0} U_{x i} \end{aligned}
将eq.8, eq.9和eq.14代入eq.13
\begin{array}{l}{-j \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \sum_{i} \frac{\partial U_{x i}}{\partial z} \exp \left(-j k_{x i} x\right)=j w \varepsilon_{0} \varepsilon(x) \sum_{i} S_{y i} \exp \left(-j k_{x i} x\right)+\frac{j}{w u_{0}} \sum_{i}\left(-j k_{x i}\right)^{2} S_{y i} \exp \left(-j k_{x i} x\right)} \\ {\Rightarrow \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \sum_{i} \frac{\partial U_{x i}}{\partial z} \exp \left(-j k_{x i} x\right)=\frac{1}{w u_{0}} \sum_{i}\left(k_{x i}\right)^{2} S_{y i} \exp \left(-j k_{x i} x\right)-w \varepsilon_{0} \varepsilon(x) \sum_{i} S_{y i} \exp \left(-j k_{x i} x\right)}\end{array}
两边乘以得
\sum_{i} \frac{\partial U_{x i}}{\partial z} \exp \left(-j k_{x i} x\right)=\sum_{i} \frac{k_{x i}^{2}}{k_{0}} S_{y i} \exp \left(-j k_{x i} x\right)-k_{0} \varepsilon(x) \sum_{i} S_{y i} \exp \left(-j k_{x i} x\right)
将eq.2和eq.6代入上式得
\sum_{i} \frac{\partial U_{x i}}{\partial z} \exp \left(-j k_{x i} x\right)=\sum_{i} \frac{k_{x a}^{2}}{k_{0}} S_{y i} \exp \left(-j k_{x x} x\right)-k_{0} \sum_{h} \varepsilon_{h} \exp \left(j \frac{2 \pi h}{\Lambda}\right) \sum_{i} S_{y i} \exp \left(-j k_{0} n_{1} \sin \theta x+j \frac{2 \pi i}{\Lambda} x\right)\\ \begin{array}{l}{=\sum_{i} \frac{k_{x i}^{2}}{k_{0}} S_{y i} \exp \left(-j k_{x i} x\right)-k_{0} \sum_{i}\left[S_{y i} \sum_{h} \varepsilon_{h} \exp \left(j \frac{2 \pi h}{\Lambda}\right) \exp \left(-j k_{0} n_{1} \sin \theta x+j \frac{2 \pi i}{\Lambda} x\right)\right]} \\ {=\sum_{i} \frac{k_{x i}^{2}}{k_{0}} S_{y i} \exp \left(-j k_{x i} x\right)-k_{0} \sum_{i}\left[S_{y i} \sum_{h} \varepsilon_{h} \exp \left[\left(-j k_{0} n_{1} \sin \theta+j \frac{2 \pi(h+i)}{\Lambda}\right) x\right]\right.} \\ {=\sum_{i} \frac{k_{x i}^{2}}{k_{0}} S_{y i} \exp \left(-j k_{x i} x\right)-k_{0} \sum_{i}\left[S_{y(i-h)} \sum_{h} \varepsilon_{h} \exp \left[\left(-j k_{0} n_{1} \sin \theta+j \frac{2 \pi i}{\Lambda}\right) x\right]\right.}\end{array}\\ \begin{array}{l}{\Rightarrow \sum_{i} \frac{\partial U_{x i}}{\partial z} \exp \left(-j k_{x i} x\right)=\sum_{i} \frac{k_{x i}^{2}}{k_{0}} S_{y i} \exp \left(-j k_{x i} x\right)-k_{0} \sum_{i}\left[S_{y(i-h)} \sum_{h} \varepsilon_{h} \exp \left(-j k_{x i} x\right)\right]} \\ {\Rightarrow \frac{\partial U_{x i}}{\partial z}=\frac{k_{x i}^{2}}{k_{0}} S_{y i}-k_{0} \sum_{h} \varepsilon_{h} S_{y(i-h)}}\end{array}\\ \stackrel{i-h=p}{\longrightarrow} \quad \frac{\partial U_{x i}}{\partial z}=\frac{k_{x i}^{2}}{k_{0}} S_{y i}-k_{0} \sum_{p} \varepsilon_{i-p} S_{y p}

也可以将耦合波方程写成矩阵的形式
\left[\begin{array}{c}{\partial \mathbf{S}_{y} / \partial\left(z^{\prime}\right)} \\ {\partial \mathbf{U}_{x} / \partial\left(z^{\prime}\right)}\end{array}\right]=\left[\begin{array}{ll}{\mathbf{0}} & {\mathbf{I}} \\ {\mathbf{A}} & {\mathbf{0}}\end{array}\right]\left[\begin{array}{l}{\mathbf{S}_{y}} \\ {\mathbf{U}_{x}}\end{array}\right] , (eq.17)
其中, , 为对角矩阵,位置的元素为,是由介电常数展开的傅里叶级数前的系数所构成的矩阵,位置的元素为 。将上述矩阵可以进一步化简(这一步的化简对于用于计算机编程计算是有很大益处的)为
, (eq.18)
将eq.17化简为eq.18的过程如下,


\begin{aligned} \frac{\partial S_{y}}{\partial z^{\prime}}=\frac{1}{k_{0}} \frac{\partial S_{y}}{\partial z} &=U_{x} \\ \Rightarrow \frac{\partial^{2} S_{y}}{\partial z^{\prime 2}} &=\frac{1}{k_{0}} \frac{\partial U_{x}}{\partial z} \\ &=\frac{k_{x i}^{2}}{k_{0}^{2}} S_{y}-\sum_{p} \varepsilon_{i-p} S_{y p} \end{aligned}

光栅区域的电场、磁场的归一化振幅可以写成
,(eq.19)
, (eq.20)

其中, 是矩阵 特征值 所对应的特征向量中的元素,是与特征向量对应的特征值的正的算术平方根,是矩阵中位置所对应的元素, 为未知系数。将eq.19和eq.20代入eq.8和eq.9写出光栅区域电磁场切向分量的表达式
, (eq.21)
H_{g x}=-j \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \sum_{i}\left\{\sum_{m=1}^{n} v_{i, m}\left[-c_{m}^{+} \exp \left(-k_{0} q_{m} z\right)+c_{m}^{-} \exp \left(k_{0} q_{m}(z-d)\right)\right]\right\} \exp \left(-j k_{x i} x\right), (eq.22)
在 界面处,利用电磁场 切向分量相等,可以得到
, (eq.23)
, (eq.24)
eq.23和eq.24的推导过程如下

将eq.3代入eq.4 并在 界面处 得
\begin{array}{l}{\exp \left(-j k_{0} n_{1} \sin \theta x\right)+\sum_{i} R_{i} \exp \left(-j k_{x i} x\right)=} \\ {\sum_{i}\left\{\sum_{m=1}^{n} \omega_{i, m}\left[c_{m}^{+}+c_{m}^{-} \exp \left(-k_{0} q_{m} d\right)\right]\right\} \exp \left(-j k_{x i} x\right)} \\ {\Rightarrow \delta_{i 0}+R_{i}=\sum_{m=1}^{n} \omega_{i, m}\left[c_{m}^{+}+c_{m}^{-} \exp \left(-k_{0} q_{m} d\right)\right]}\end{array}
将eq.3代入eq.4,并利用eq.10得
\begin{aligned} H_{I, x} &=\frac{-j}{w \mu_{0}}\left\{-j k_{0} n_{1} \cos \theta \exp \left[-j k_{0} n_{1}(\sin \theta x+\cos \theta z)\right]+\sum_{i} j k_{1 z} R_{i} \exp \left[-j\left(k_{x i} x-k_{1 z i} z\right)\right]\right\} \\ &=\frac{1}{w \mu_{0}}\left\{-k_{0} n_{1} \cos \theta \exp \left[-j k_{0} n_{1}(\sin \theta x+\cos \theta z)\right]+\sum_{i} k_{1 z i} R_{i} \exp \left[-j\left(k_{x i} x-k_{1 z i} z\right)\right]\right\} \end{aligned}
在界面处 得
\begin{array}{l}{\frac{1}{w \mu_{0}}\left\{-k_{0} n_{1} \cos \theta \exp \left(-j k_{0} n_{1} \sin \theta x\right)+\sum_{i} k_{1 : i} R_{i} \exp \left(-j k_{x i} x\right)\right\}=} \\ {-j \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \sum_{i}\left\{\sum_{m=1}^{n} v_{i, m}\left[-c_{m}^{+}+c_{m}^{-} \exp \left(-k_{0} q_{m} d\right)\right]\right\} \exp \left(-j k_{x i} x\right)}\end{array}
等式两边同乘 得
\begin{array}{l}{\frac{j}{w} \sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}\left\{-k_{0} n_{1} \cos \theta \exp \left(-j k_{0} n_{1} \sin \theta x\right)+\sum_{i} k_{1 : i} R_{i} \exp \left(-j k_{x i} x\right)\right\}=} \\ {\sum_{i}\left\{\sum_{m=1}^{n} v_{i, m}\left[-c_{m}^{+}+c_{m}^{-} \exp \left(-k_{0} q_{m} d\right)\right]\right\} \exp \left(-j k_{x i} x\right)} \\ {\Rightarrow j\left\{-n_{1} \cos \theta \exp \left(-j k_{0} n_{1} \sin \theta x\right)+\sum_{i} \frac{k_{1 : i}}{k_{0}} R_{i} \exp \left(-j k_{x i} x\right)\right\}=} \\ {\sum_{i}\left\{\sum_{m=1}^{n} v_{i, m}\left[-c_{m}^{+}+c_{m}^{-} \exp \left(-k_{0} q_{m} d\right)\right]\right\} \exp \left(-j k_{x i} x\right)} \\ {\Rightarrow j\left[n_{1} \cos \theta \delta_{i 0}-\frac{k_{1 : z}}{k_{0}} R_{i}\right]=\sum_{m=1}^{n} v_{i, m}\left[c_{m}^{+}-c_{m}^{-} \exp \left(-k_{0} q_{m} d\right)\right]}\end{array}

在 界面处(推导方式同 ),利用电磁场切向分量相等,可以得到
\left\{\begin{array}{l}{\sum_{m=1}^{n} \omega_{i, m}\left[c_{m}^{+} \exp \left(-k_{0} q_{m} d\right)+c_{m}^{-}\right]=T_{i}} \\ {\sum_{m=1}^{n} v_{i, m}\left[c_{m}^{+} \exp \left(-k_{0} q_{m} d\right)-c_{m}^{-}\right]=j\left(k_{\Pi, z i} / k_{0}\right) T_{i}}\end{array}\right. , (eq.25)
接下来就是求出eq.23、eq.24和eq.25中的未知矩阵 ,求出带回去就可以求得光栅的衍射效率,大体的思路是利用eq.23和eq.24联合消掉,eq.25中的两个等式联合消掉,再利用这两个联合的等式求出 即可得到矩阵 。具体求解过程如下

对eq.23()
等式两边乘 并加上eq.24( )消去得到
j \frac{k_{1, z i}}{k_{0}} \delta_{i 0}+j n_{1} \cos \theta \delta_{i 0}=\sum_{m=1}^{n}\left\{\left(j \frac{k_{1 : i}}{k_{0}} \omega_{i, m}+v_{i, m}\right) c_{m}^{+}+\left(j \frac{k_{1 z i}}{k_{0}} \omega_{i, m}-v_{i, m}\right) c_{m}^{-} \exp \left(-k_{0} q_{m} d\right)\right\} , (eq.26)
对eq.25中的第一式()两边同乘并减去 eq.25中的第二式()
消掉得
0=\sum_{m=1}^{n}\left\{\left(v_{i, m}-j \frac{k_{11, z i}}{k_{0}} \omega_{i, m}\right) c_{m}^{+} \exp \left(-k_{0} q_{m} d\right)+\left(-v_{i, m}-j \frac{k_{\Pi, z i}}{k_{0}} \omega_{i, m}\right) c_{m}^{-}\right\}, (eq.27)
将eq.26和eq.27写成矩阵形式
\left[\begin{array}{l}{0} \\ {\vdots} \\ {0} \\ {j \frac{k_{1, z i}}{k_{0}}+j n_{1} \cos \theta(i=0)} \\ {0} \\ {\vdots} \\ {0}\end{array}\right]=\left[\begin{array}{ll}{j Y_{1} W+V} & {\left(j Y_{1} W-V\right) X} \\ {X\left(V-j Y_{11} W\right)} & {-V-j Y_{11} W}\end{array}\right][C]
\Rightarrow[C]=\left[\begin{array}{ll}{j \mathrm{Y}_{\mathrm{I}} \mathrm{W}+\mathrm{V}} & {\left(j \mathrm{Y}_{\mathrm{I}} \mathrm{W}-\mathrm{V}\right) \mathrm{X}} \\ {\mathrm{X}\left(\mathrm{V}-j \mathrm{Y}_{\mathrm{II}} \mathrm{W}\right)} & {-\mathrm{V}-j \mathrm{Y}_{\mathrm{II}} \mathrm{W}}\end{array}\right]^{-1}\left[\begin{array}{l}{0} \\ {\vdots} \\ {0} \\ {j \frac{k_{1, z i}}{k_{0}}+j n_{1} \cos \theta(i=0)} \\ {0} \\ {\vdots} \\ {0}\end{array}\right] (eq.28)
其中,,分别是以为对角元素的对角矩阵。

将得到代到eq.23、eq.24和eq.25就可以得到 。到此,基本的物理参数就求解完毕了,可以代到以下公式得到光栅的衍射效率。
\begin{array}{l}{\mathrm{DE}_{r i}=R_{i} R_{i}^{*} \operatorname{Re}\left(\frac{k_{\mathrm{I}, z i}}{k_{0} n_{\mathrm{I}} \cos \theta}\right)} \\ {\mathrm{DE}_{t i}=T_{i} T_{i}^{*} \operatorname{Re}\left(\frac{k_{\mathrm{II}, z i}}{k_{0} n_{\mathrm{I}} \cos \theta}\right)}\end{array}, (eq.29)

3.结束语

RCWA在计算周期结构的电磁场问题上是非常受欢迎的工具,相比于其它方法,它易于编程进行计算,而且速度快,还可以获得想要的物理参数,容易建立起物理图像,进而,帮助我们理解物理本质。多年来,该方法得到不断地完善,功能已经很强大了(上文介绍的大概是最基本的了)。网上有许多开源的程序,可以去下载学习一下,就写这么多吧。其实,我理解的也是很浅,但希望对你有帮助。

参考

  1. ^Antonakakis, Tryfon, et al. "Gratings: Theory and Numeric Applications, Second Revisited Edition." Amu Cnrs Ecm (2014).
  2. ^Moharam, M. G. . "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings." J. Opt. Soc. Am. A 12(1995).
  3. ^石顺祥,刘继芳. 光的电磁理论—光波的传播与控制(第二版).西安电子科技大学出版社(2013).

你可能感兴趣的:(知识笔记| 严格耦合波(RCWA)/傅里叶模态法(FMM)的学习)