九种分布式ID生成方式

 

一、为什么要用分布式ID?

在说分布式ID的具体实现之前,我们来简单分析一下为什么用分布式ID?分布式ID应该满足哪些特征?

1、什么是分布式ID?

拿MySQL数据库举个栗子:

在我们业务数据量不大的时候,单库单表完全可以支撑现有业务,数据再大一点搞个MySQL主从同步读写分离也能对付。

但随着数据日渐增长,主从同步也扛不住了,就需要对数据库进行分库分表,但分库分表后需要有一个唯一ID来标识一条数据,数据库的自增ID显然不能满足需求;特别一点的如订单、优惠券也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。那么这个全局唯一ID就叫分布式ID

2、那么分布式ID需要满足那些条件?

  • 全局唯一:必须保证ID是全局性唯一的,基本要求

  • 高性能:高可用低延时,ID生成响应要块,否则反倒会成为业务瓶颈

  • 高可用:100%的可用性是骗人的,但是也要无限接近于100%的可用性

  • 好接入:要秉着拿来即用的设计原则,在系统设计和实现上要尽可能的简单

  • 趋势递增:最好趋势递增,这个要求就得看具体业务场景了,一般不严格要求

二、 分布式ID都有哪些生成方式?

今天主要分析一下以下9种,分布式ID生成器方式以及优缺点:

  • UUID

  • 数据库自增ID

  • 数据库多主模式

  • 号段模式

  • Redis

  • 雪花算法(SnowFlake)

  • 滴滴出品(TinyID)   QPS :  1000W/s

  • 百度 (Uidgenerator)  QPS :  600W/s

  • 美团(Leaf) 

 

 

 

1、基于UUID

在Java的世界里,想要得到一个具有唯一性的ID,首先被想到可能就是UUID,毕竟它有着全球唯一的特性。那么UUID可以做分布式ID吗?答案是可以的,但是并不推荐!

public static void main(String[] args) { 

       String uuid = UUID.randomUUID().toString().replaceAll("-","");

       System.out.println(uuid);

 }
  1. public static void main(String[] args) { 

  2.        String uuid = UUID.randomUUID().toString().replaceAll("-","");

  3.        System.out.println(uuid);

  4.  }

UUID的生成简单到只有一行代码,输出结果 c2b8c2b9e46c47e3b30dca3b0d447718,但UUID却并不适用于实际的业务需求。像用作订单号UUID这样的字符串没有丝毫的意义,看不出和订单相关的有用信息;而对于数据库来说用作业务主键ID,它不仅是太长还是字符串,存储性能差查询也很耗时,所以不推荐用作分布式ID

优点:

  • 生成足够简单,本地生成无网络消耗,具有唯一性

缺点:

  • 无序的字符串,不具备趋势自增特性

  • 没有具体的业务含义

  • 长度过长16 字节128位,36位长度的字符串,存储以及查询对MySQL的性能消耗较大,MySQL官方明确建议主键要尽量越短越好,作为数据库主键 UUID 的无序性会导致数据位置频繁变动,严重影响性能。

2、基于数据库自增ID

基于数据库的auto_increment自增ID完全可以充当分布式ID,具体实现:需要一个单独的MySQL实例用来生成ID,建表结构如下:

CREATE DATABASE `SEQ_ID`;

CREATE TABLE SEQID.SEQUENCE_ID (

    id bigint(20) unsigned NOT NULL auto_increment, 

    value char(10) NOT NULL default '',

    PRIMARY KEY (id),

) ENGINE=MyISAM
insert into SEQUENCE_ID(value)  VALUES ('values');

当我们需要一个ID的时候,向表中插入一条记录返回主键ID,但这种方式有一个比较致命的缺点,访问量激增时MySQL本身就是系统的瓶颈,用它来实现分布式服务风险比较大,不推荐!

优点:

  • 实现简单,ID单调自增,数值类型查询速度快

缺点:

  • DB单点存在宕机风险,无法扛住高并发场景

3、基于数据库集群模式

前边说了单点数据库方式不可取,那对上边的方式做一些高可用优化,换成主从模式集群。害怕一个主节点挂掉没法用,那就做双主模式集群,也就是两个Mysql实例都能单独的生产自增ID。

那这样还会有个问题,两个MySQL实例的自增ID都从1开始,会生成重复的ID怎么办?

解决方案:设置起始值自增步长

MySQL_1 配置:

set @@auto_increment_offset = 1;     -- 起始值

set @@auto_increment_increment = 2;  -- 步长
MySQL_2 配置:
set @@auto_increment_offset = 2;     -- 起始值

set @@auto_increment_increment = 2;  -- 步长

这样两个MySQL实例的自增ID分别就是:

1、3、5、7、9 
2、4、6、8、10

那如果集群后的性能还是扛不住高并发咋办?就要进行MySQL扩容增加节点,这是一个比较麻烦的事。

 

水平扩展的数据库集群,有利于解决数据库单点压力的问题,同时为了ID生成特性,将自增步长按照机器数量来设置。

增加第三台MySQL实例需要人工修改一、二两台MySQL实例的起始值和步长,把第三台机器的ID起始生成位置设定在比现有最大自增ID的位置远一些,但必须在一、二两台MySQL实例ID还没有增长到第三台MySQL实例起始ID值的时候,否则自增ID就要出现重复了,必要时可能还需要停机修改

优点:

  • 解决DB单点问题

缺点:

  • 不利于后续扩容,而且实际上单个数据库自身压力还是大,依旧无法满足高并发场景。

4、基于数据库的号段模式

号段模式是当下分布式ID生成器的主流实现方式之一,号段模式可以理解为从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,具体的业务服务将本号段,生成1~1000的自增ID并加载到内存。表结构如下:

CREATE TABLE id_generator (

  id int(10) NOT NULL,

  max_id bigint(20) NOT NULL COMMENT '当前最大id',

  step int(20) NOT NULL COMMENT '号段的布长',

  biz_type    int(20) NOT NULL COMMENT '业务类型',

  version int(20) NOT NULL COMMENT '版本号',

  PRIMARY KEY (`id`)

) 

biz_type :代表不同业务类型

max_id :当前最大的可用id

step :代表号段的长度

version :是一个乐观锁,每次都更新version,保证并发时数据的正确性

id biz_type max_id step version
1 101 1000 2000 0

等这批号段ID用完,再次向数据库申请新号段,对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]

update id_generator set max_id = #{max_id+step}, version = version + 1 where version = # {version} and biz_type = XXX

由于多业务端可能同时操作,所以采用版本号version乐观锁方式更新,这种分布式ID生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。

5、基于Redis模式

Redis也同样可以实现,原理就是利用redis的 incr命令实现ID的原子性自增。

127.0.0.1:6379> set seq_id 1     // 初始化自增ID为1

OK

127.0.0.1:6379> incr seq_id      // 增加1,并返回递增后的数值

(integer) 2

redis实现需要注意一点,要考虑到redis持久化的问题。redis有两种持久化方式RDBAOF

  • RDB会定时打一个快照进行持久化,假如连续自增但redis没及时持久化,而这会Redis挂掉了,重启Redis后会出现ID重复的情况。

  • AOF会对每条写命令进行持久化,即使Redis挂掉了也不会出现ID重复的情况,但由于incr命令的特殊性,会导致Redis重启恢复的数据时间过长。

6、基于雪花算法(Snowflake)模式

雪花算法(Snowflake)是twitter公司内部分布式项目采用的ID生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特色的分布式生成器。

九种分布式ID生成方式_第1张图片

 

 

Snowflake生成的是Long类型的ID,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特。

Snowflake ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 数据中心(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。

  • 第一个bit位(1bit):Java中long的最高位是符号位代表正负,正数是0,负数是1,一般生成ID都为正数,所以默认为0。

  • 时间戳部分(41bit):毫秒级的时间,不建议存当前时间戳,而是用(当前时间戳 - 固定开始时间戳)的差值,可以使产生的ID从更小的值开始;41位的时间戳可以使用69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年

  • 工作机器id(10bit):也被叫做workId,这个可以灵活配置,机房或者机器号组合都可以。

  • 序列号部分(12bit),自增值支持同一毫秒内同一个节点可以生成4096个ID

根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。

Java版本的Snowflake算法实现:

/**

 * Twitter的SnowFlake算法,使用SnowFlake算法生成一个整数,然后转化为62进制变成一个短地址URL

 *

 * https://github.com/beyondfengyu/SnowFlake

 */

public class SnowFlakeShortUrl {


    /**

     * 起始的时间戳

     */

    private final static long START_TIMESTAMP = 1480166465631L;


    /**

     * 每一部分占用的位数

     */

    private final static long SEQUENCE_BIT = 12;   //序列号占用的位数

    private final static long MACHINE_BIT = 5;     //机器标识占用的位数

    private final static long DATA_CENTER_BIT = 5; //数据中心占用的位数


    /**

     * 每一部分的最大值

     */

    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);

    private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);

    private final static long MAX_DATA_CENTER_NUM = -1L ^ (-1L << DATA_CENTER_BIT);


    /**

     * 每一部分向左的位移

     */

    private final static long MACHINE_LEFT = SEQUENCE_BIT;

    private final static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;

    private final static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT;


    private long dataCenterId;  //数据中心

    private long machineId;     //机器标识

    private long sequence = 0L; //序列号

    private long lastTimeStamp = -1L;  //上一次时间戳


    private long getNextMill() {

        long mill = getNewTimeStamp();

        while (mill <= lastTimeStamp) {

            mill = getNewTimeStamp();

        }

        return mill;

    }


    private long getNewTimeStamp() {

        return System.currentTimeMillis();

    }


    /**

     * 根据指定的数据中心ID和机器标志ID生成指定的序列号

     *

     * @param dataCenterId 数据中心ID

     * @param machineId    机器标志ID

     */

    public SnowFlakeShortUrl(long dataCenterId, long machineId) {

        if (dataCenterId > MAX_DATA_CENTER_NUM || dataCenterId < 0) {

            throw new IllegalArgumentException("DtaCenterId can't be greater than MAX_DATA_CENTER_NUM or less than 0!");

        }

        if (machineId > MAX_MACHINE_NUM || machineId < 0) {

            throw new IllegalArgumentException("MachineId can't be greater than MAX_MACHINE_NUM or less than 0!");

        }

        this.dataCenterId = dataCenterId;

        this.machineId = machineId;

    }


    /**

     * 产生下一个ID

     *

     * @return

     */

    public synchronized long nextId() {

        long currTimeStamp = getNewTimeStamp();

        if (currTimeStamp < lastTimeStamp) {

            throw new RuntimeException("Clock moved backwards.  Refusing to generate id");

        }


        if (currTimeStamp == lastTimeStamp) {

            //相同毫秒内,序列号自增

            sequence = (sequence + 1) & MAX_SEQUENCE;

            //同一毫秒的序列数已经达到最大

            if (sequence == 0L) {

                currTimeStamp = getNextMill();

            }

        } else {

            //不同毫秒内,序列号置为0

            sequence = 0L;

        }


        lastTimeStamp = currTimeStamp;


        return (currTimeStamp - START_TIMESTAMP) << TIMESTAMP_LEFT //时间戳部分

                | dataCenterId << DATA_CENTER_LEFT       //数据中心部分

                | machineId << MACHINE_LEFT             //机器标识部分

                | sequence;                             //序列号部分

    }


    public static void main(String[] args) {

        SnowFlakeShortUrl snowFlake = new SnowFlakeShortUrl(2, 3);


        for (int i = 0; i < (1 << 4); i++) {

            //10进制

            System.out.println(snowFlake.nextId());

        }

    }

}

7、百度(uid-generator)

uid-generator是由百度技术部开发,项目GitHub地址

https://github.com/baidu/uid-generator

UidGenerator是Java实现的, 基于Snowflake算法的唯一ID生成器。UidGenerator以组件形式工作在应用项目中, 支持自定义workerId位数和初始化策略, 从而适用于docker等虚拟化环境下实例自动重启、漂移等场景。 在实现上, UidGenerator通过借用未来时间来解决sequence天然存在的并发限制; 采用RingBuffer来缓存已生成的UID, 并行化UID的生产和消费, 同时对CacheLine补齐,避免了由RingBuffer带来的硬件级「伪共享」问题. 最终单机QPS可达600万。

依赖版本:Java8及以上版本, MySQL(内置WorkerID分配器, 启动阶段通过DB进行分配; 如自定义实现, 则DB非必选依赖)

Snowflake算法

九种分布式ID生成方式_第2张图片
Snowflake算法描述:指定机器 & 同一时刻 & 某一并发序列,是唯一的。据此可生成一个64 bits的唯一ID(long)。默认采用上图字节分配方式:

  • sign(1bit)
    固定1bit符号标识,即生成的UID为正数。

  • delta seconds (28 bits)
    当前时间,相对于时间基点"2016-05-20"的增量值,单位:秒,最多可支持约8.7年

  • worker id (22 bits)
    机器id,最多可支持约420w次机器启动。内置实现为在启动时由数据库分配,默认分配策略为用后即弃,后续可提供复用策略。

  • sequence (13 bits)
    每秒下的并发序列,13 bits可支持每秒8192个并发。

以上参数均可通过Spring进行自定义

CachedUidGenerator

RingBuffer环形数组,数组每个元素成为一个slot。RingBuffer容量,默认为Snowflake算法中sequence最大值,且为2^N。可通过boostPower配置进行扩容,以提高RingBuffer 读写吞吐量。

Tail指针、Cursor指针用于环形数组上读写slot:

  • Tail指针
    表示Producer生产的最大序号(此序号从0开始,持续递增)。Tail不能超过Cursor,即生产者不能覆盖未消费的slot。当Tail已赶上curosr,此时可通过rejectedPutBufferHandler指定PutRejectPolicy

  • Cursor指针
    表示Consumer消费到的最小序号(序号序列与Producer序列相同)。Cursor不能超过Tail,即不能消费未生产的slot。当Cursor已赶上tail,此时可通过rejectedTakeBufferHandler指定TakeRejectPolicy

九种分布式ID生成方式_第3张图片

CachedUidGenerator采用了双RingBuffer,Uid-RingBuffer用于存储Uid、Flag-RingBuffer用于存储Uid状态(是否可填充、是否可消费)

由于数组元素在内存中是连续分配的,可最大程度利用CPU cache以提升性能。但同时会带来「伪共享」FalseSharing问题,为此在Tail、Cursor指针、Flag-RingBuffer中采用了CacheLine 补齐方式。

九种分布式ID生成方式_第4张图片

 

RingBuffer填充时机

  • 初始化预填充
    RingBuffer初始化时,预先填充满整个RingBuffer.

  • 即时填充
    Take消费时,即时检查剩余可用slot量(tail - cursor),如小于设定阈值,则补全空闲slots。阈值可通过paddingFactor来进行配置,请参考Quick Start中CachedUidGenerator配置

  • 周期填充
    通过Schedule线程,定时补全空闲slots。可通过scheduleInterval配置,以应用定时填充功能,并指定Schedule时间间隔

 

吞吐量测试

在MacBook Pro(2.7GHz Intel Core i5, 8G DDR3)上进行了CachedUidGenerator(单实例)的UID吞吐量测试.
首先固定住workerBits为任选一个值(如20), 分别统计timeBits变化时(如从25至32, 总时长分别对应1年和136年)的吞吐量, 如下表所示:

timeBits 25 26 27 28 29 30 31 32
throughput 6,831,465 7,007,279 6,679,625 6,499,205 6,534,971 7,617,440 6,186,930 6,364,997

九种分布式ID生成方式_第5张图片

再固定住timeBits为任选一个值(如31), 分别统计workerBits变化时(如从20至29, 总重启次数分别对应1百万和500百万)的吞吐量, 如下表所示:

workerBits 20 21 22 23 24 25 26 27 28 29
throughput 6,186,930 6,642,727 6,581,661 6,462,726 6,774,609 6,414,906 6,806,266 6,223,617 6,438,055

6,435,549

 

九种分布式ID生成方式_第6张图片

由此可见, 不管如何配置, CachedUidGenerator总能提供600万/s的稳定吞吐量, 只是使用年限会有所减少. 这真的是太棒了.

最后, 固定住workerBits和timeBits位数(如23和31), 分别统计不同数目(如1至8,本机CPU核数为4)的UID使用者情况下的吞吐量,

workerBits 1 2 3 4 5 6 7 8
throughput 6,462,726 6,542,259 6,077,717 6,377,958 7,002,410 6,599,113 7,360,934 6,490,969

 

九种分布式ID生成方式_第7张图片

 

参考文献
https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md

8、美团(Leaf)

Leaf由美团开发,github地址:

https://github.com/Meituan-Dianping/Leaf

 

Leaf 最早期需求是各个业务线的订单ID生成需求。在美团早期,有的业务直接通过DB自增的方式生成ID,有的业务通过redis缓存来生成ID,也有的业务直接用UUID这种方式来生成ID。以上的方式各自有各自的问题,因此我们决定实现一套分布式ID生成服务来满足需求。具体Leaf 设计文档见: leaf 美团分布式ID生成服务

目前Leaf覆盖了美团点评公司内部金融、餐饮、外卖、酒店旅游、猫眼电影等众多业务线。在4C8G VM基础上,通过公司RPC方式调用,QPS压测结果近5w/s,TP999 1ms。

Leaf同时支持号段模式和snowflake算法模式,可以切换使用。

号段模式

先导入源码 https://github.com/Meituan-Dianping/Leaf ,在建一张表leaf_alloc

DROP TABLE IF EXISTS `leaf_alloc`;


CREATE TABLE `leaf_alloc` (

  `biz_tag` varchar(128)  NOT NULL DEFAULT '' COMMENT '业务key',

  `max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',

  `step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',

  `description` varchar(256)  DEFAULT NULL COMMENT '业务key的描述',

  `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',

  PRIMARY KEY (`biz_tag`)

) ENGINE=InnoDB;

然后在项目中开启号段模式,配置对应的数据库信息,并关闭snowflake模式

leaf.name=com.sankuai.leaf.opensource.test

leaf.segment.enable=true

leaf.jdbc.url=jdbc:mysql://localhost:3306/leaf_test?useUnicode=true&characterEncoding=utf8&characterSetResults=utf8

leaf.jdbc.username=root

leaf.jdbc.password=root


leaf.snowflake.enable=false

#leaf.snowflake.zk.address=

#leaf.snowflake.port=

启动leaf-server 模块的 LeafServerApplication项目就跑起来了

号段模式获取分布式自增ID的测试url :http://localhost:8080/api/segment/get/leaf-segment-test

监控号段模式:http://localhost:8080/cache

snowflake模式

Leaf的snowflake模式依赖于ZooKeeper,不同于原始snowflake算法也主要是在workId的生成上,LeafworkId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId

leaf.snowflake.enable=true

leaf.snowflake.zk.address=127.0.0.1

leaf.snowflake.port=2181

snowflake模式获取分布式自增ID的测试url:http://localhost:8080/api/snowflake/get/test

9、滴滴(Tinyid)

Tinyid是用Java开发的一款分布式id生成系统,基于数据库号段算法实现,关于这个算法可以参考美团leaf或者tinyid原理介绍。Tinyid扩展了leaf-segment算法,支持了多db(master),同时提供了java-client(sdk)使id生成本地化,获得了更好的性能与可用性。Tinyid在滴滴客服部门使用,均通过tinyid-client方式接入,每天生成亿级别的id。

 

Tinyid由滴滴开发,Github地址:

https://github.com/didi/tinyid。

Tinyid是基于号段模式原理实现的与Leaf如出一辙,每个服务获取一个号段(1000,2000]、(2000,3000]、(3000,4000]

 

性能与可用性

性能

  1. http方式访问,性能取决于http server的能力,网络传输速度
  2. java-client方式,id为本地生成,号段长度(step)越长,qps越大,如果将号段设置足够大,则qps可达1000w+

可用性

  1. 依赖db,当db不可用时,因为server有缓存,所以还可以使用一段时间,如果配置了多个db,则只要有1个db存活,则服务可用
  2. 使用tiny-client,只要server有一台存活,则理论上可用,server全挂,因为client有缓存,也可以继续使用一段时间

Tinyid的特性

  1. 全局唯一的long型id
  2. 趋势递增的id,即不保证下一个id一定比上一个大
  3. 非连续性
  4. 提供http和java client方式接入
  5. 支持批量获取id
  6. 支持生成1,3,5,7,9...序列的id
  7. 支持多个db的配置,无单点

适用场景:只关心id是数字,趋势递增的系统,可以容忍id不连续,有浪费的场景
不适用场景:类似订单id的业务(因为生成的id大部分是连续的,容易被扫库、或者测算出订单量)

依赖

JDK1.7+,maven,mysql, java client目前仅依赖jdk

示例

请参考getting start

推荐使用方式

  • tinyid-server推荐部署到多个机房的多台机器
    • 多机房部署可用性更高,http方式访问需使用方考虑延迟问题
  • 推荐使用tinyid-client来获取id,好处如下:
    • id为本地生成(调用AtomicLong.addAndGet方法),性能大大增加
    • client对server访问变的低频,减轻了server的压力
    • 因为低频,即便client使用方和server不在一个机房,也无须担心延迟
    • 即便所有server挂掉,因为client预加载了号段,依然可以继续使用一段时间 注:使用tinyid-client方式,如果client机器较多频繁重启,可能会浪费较多的id,这时可以考虑使用http方式
  • 推荐db配置两个或更多:
    • db配置多个时,只要有1个db存活,则服务可用 多db配置,如配置了两个db,则每次新增业务需在两个db中都写入相关数据

tinyid的原理

  • tinyid是基于数据库发号算法实现的,简单来说是数据库中保存了可用的id号段,tinyid会将可用号段加载到内存中,之后生成id会直接内存中产生。
  • 可用号段在第一次获取id时加载,如当前号段使用达到一定量时,会异步加载下一可用号段,保证内存中始终有可用号段。
  • (如可用号段1~1000被加载到内存,则获取id时,会从1开始递增获取,当使用到一定百分比时,如20%(默认),即200时,会异步加载下一可用号段到内存,假设新加载的号段是1001~2000,则此时内存中可用号段为200~1000,1001~2000),当id递增到1000时,当前号段使用完毕,下一号段会替换为当前号段。依次类推。

tinyid系统架构图

九种分布式ID生成方式_第8张图片

 

下面是一些关于这个架构图的说明:

  • nextId和getNextSegmentId是tinyid-server对外提供的两个http接口
  • nextId是获取下一个id,当调用nextId时,会传入bizType,每个bizType的id数据是隔离的,生成id会使用该bizType类型生成的IdGenerator。
  • getNextSegmentId是获取下一个可用号段,tinyid-client会通过此接口来获取可用号段
  • IdGenerator是id生成的接口
  • IdGeneratorFactory是生产具体IdGenerator的工厂,每个biz_type生成一个IdGenerator实例。通过工厂,我们可以随时在db中新增biz_type,而不用重启服务
  • IdGeneratorFactory实际上有两个子类IdGeneratorFactoryServer和IdGeneratorFactoryClient,区别在于,getNextSegmentId的不同,一个是DbGet,一个是HttpGet
  • CachedIdGenerator则是具体的id生成器对象,持有currentSegmentId和nextSegmentId对象,负责nextId的核心流程。nextId最终通过AtomicLong.andAndGet(delta)方法产生。

总结

本文只是简单介绍一下每种分布式ID生成器,旨在给大家一个详细学习的方向,每种生成方式都有它自己的优缺点,具体如何使用还要看具体的业务需求。

你可能感兴趣的:(分布式,算法,SQL,算法,mysql,redis,分布式)