- FlinkSQL 自定义函数详解
Tit先生
基础flinksql大数据java
FlinkSQL函数详解自定义函数除了内置函数之外,FlinkSQL还支持自定义函数,我们可以通过自定义函数来扩展函数的使用FlinkSQL当中自定义函数主要分为四大类:1.ScalarFunction:标量函数特点:每次只接收一行的数据,输出结果也是1行1列典型的标量函数如:upper(str),lower(str),abs(salary)2.TableFunction:表生成函数特点:运行时每
- HTB academy -- Linux Privilege Escalation --Service-based Privilege Escalation
网络安全小吗喽
linux服务器网络安全测试工具
VulnerableServices#!/bin/bash#screenroot.sh#setuidscreenv4.5.0localrootexploit#abusesld.so.preloadoverwritingtogetroot.#bug:https://lists.gnu.org/archive/html/screen-devel/2017-01/msg00025.html#HACKTH
- 网络安全核心技术解析:权限提升(Privilege Escalation)攻防全景
引言在网络安全攻防对抗中,权限提升(PrivilegeEscalation)是攻击链条中关键的「破局点」。攻击者通过突破系统权限壁垒,往往能以有限权限为跳板,最终掌控整个系统控制权。本文将从攻击原理、技术路径、实战案例到防御体系,全方位解析这一网络空间的「钥匙窃取」艺术。一、权限提升的本质与分类1.1核心定义权限提升指攻击者通过技术手段,将当前运行进程或用户的权限等级突破系统预设的访问控制机制,获
- 安全运维的 “五层防护”:构建全方位安全体系
KKKlucifer
安全运维
在数字化运维场景中,异构系统复杂、攻击手段隐蔽等挑战日益突出。保旺达基于“全域纳管-身份认证-行为监测-自动响应-审计溯源”的五层防护架构,融合AI、零信任等技术,构建全链路安全运维体系,以下从技术逻辑与实践落地展开解析:第一层:全域资产纳管——筑牢安全根基挑战云网基础设施包含分布式计算(Hadoop/Spark)、数据流处理(Storm/Flink)等异构组件,通信协议繁杂,传统方案难以全面纳管
- Embabel:下一代企业级JVM AI智能体框架的革命引言:AI时代的Java生态新机遇
DZSpace
软件开发jvm人工智能java
在生成式AI(如ChatGPT、Claude、Gemini)席卷全球的背景下,Python凭借其丰富的AI工具链(如PyTorch、LangChain)成为主流开发语言。然而,在企业级软件开发领域,Java和JVM生态(如Kotlin、Scala)长期以来占据主导地位,尤其是在金融、电信、电商等对稳定性、可扩展性、事务管理要求极高的场景。RodJohnson(Spring框架创始人)敏锐地发现了这
- ftp文件服务器有连接数限制,查看ftp服务器连接数命令
赵承铭
ftp文件服务器有连接数限制
查看ftp服务器连接数命令内容精选换一换本章节适用于MRS3.x之前版本。Loader支持以下多种连接,每种连接的配置介绍可根据本章节内容了解。obs-connectorgeneric-jdbc-connectorftp-connector或sftp-connectorhbase-connector、hdfs-connector或hive-connectorOBS连接是Loa“数据导入”章节适用于
- Scala实现网页数据采集示例
Scala可以轻松实现简单的数据采集任务,结合AkkaHTTP(高效HTTP客户端)和Jsoup(HTML解析库)是常见方案。Scala因为受众比较少,而且随着这两年python的热门语言,更让Scala不为人知,今天我将结合我所学的知识实现一个简单的Scala爬虫代码示例。以下就是我整理的一个完整示例,演示如何抓取网页标题和链接:示例代码importakka.actor.ActorSystemi
- Hive 事务表(ACID)问题梳理
文章目录问题描述分析原因什么是事务表概念事务表和普通内部表的区别相关配置事务表的适用场景注意事项设计原理与实现文件管理格式参考博客问题描述工作中需要使用pyspark读取Hive中的数据,但是发现可以获取metastore,外部表的数据可以读取,内部表数据有些表报错信息是:AnalysisException:org.apache.hadoop.hive.ql.metadata.HiveExcept
- kafka 每条消息只会保存到某一个分区
scan724
kafka
也就是说Kafka的消息组织方式实际上是三级结构:主题-分区-消息。主题下的每条消息只会保存在某一个分区中,而不会在多个分区中被保存多份。官网上的这张图非常清晰地展示了Kafka的三级结构,如下所示其实分区的作用就是提供负载均衡的能力,或者说对数据进行分区的主要原因,就是为了实现系统的高伸缩性(Scalability)。不同的分区能够被放置到不同节点的机器上,而数据的读写操作也都是针对分区这个粒度
- 2025年跑深度学习电脑配置-深度学习显卡推荐
OpenCV图像识别
人工智能深度学习智能电视人工智能
2025年跑深度学习任务,电脑配置需从处理器、内存、显卡、存储、散热与电源、扩展性、网络连接等多方面综合考量,以下是具体分析:处理器(CPU)多核高性能:深度学习涉及大量并行计算任务,需要处理器具备强大的多核处理能力。英特尔至强Scalable处理器(SapphireRapids或后续架构)和AMDEPYC处理器(Genoa或后续架构)是不错的选择。英特尔至强Scalable处理器提供卓越的单核性
- HBase总结
HBase1.HBase核心概念HBase的作用HBase主要用于存储和管理超大规模的结构化或半结构化数据(如PB级),特点包括:高扩展性:通过分布式架构横向扩展,支持数千台服务器高吞吐量:适合实时随机读写(如用户行为日志、实时分析)强一致性:保证同一行数据的原子性操作灵活的数据模型:支持动态列和稀疏存储典型应用场景:互联网公司的用户行为日志存储(如点击流数据)社交媒体的实时消息存储物联网设备时序
- 云原生--微服务、CICD、SaaS、PaaS、IaaS
青秋.
云原生docker云原生微服务kubernetesserverlessservice_meshci/cd
往期推荐浅学React和JSX-CSDN博客一文搞懂大数据流式计算引擎Flink【万字详解,史上最全】-CSDN博客一文入门大数据准流式计算引擎Spark【万字详解,全网最新】_大数据spark-CSDN博客目录1.云原生概念和特点2.常见云模式3.云对外提供服务的架构模式3.1IaaS(Infrastructure-as-a-Service)3.2PaaS(Platform-as-a-Servi
- Spark运行架构
EmoGP
Sparkspark架构大数据
Spark框架的核心是一个计算引擎,整体来说,它采用了标准master-slave的结构 如下图所示,它展示了一个Spark执行时的基本结构,图形中的Driver表示master,负责管理整个集群中的作业任务调度,图形中的Executor则是slave,负责实际执行任务。由上图可以看出,对于Spark框架有两个核心组件:DriverSpark驱动器节点,用于执行Spark任务中的main方法,负
- Spark 各种配置项
zhixingheyi_tian
大数据sparkSparkConfsparkjvmjava
/bin/spark-shell--masteryarn--deploy-modeclient/bin/spark-shell--masteryarn--deploy-modeclusterTherearetwodeploymodesthatcanbeusedtolaunchSparkapplicationsonYARN.Inclustermode,theSparkdriverrunsinside
- Spark RDD 及性能调优
Aurora_NeAr
sparkwpfc#
RDDProgrammingRDD核心架构与特性分区(Partitions):数据被切分为多个分区;每个分区在集群节点上独立处理;分区是并行计算的基本单位。计算函数(ComputeFunction):每个分区应用相同的转换函数;惰性执行机制。依赖关系(Dependencies)窄依赖:1个父分区→1个子分区(map、filter)。宽依赖:1个父分区→多个子分区(groupByKey、join)。
- Apache Iceberg数据湖基础
Aurora_NeAr
apache
IntroducingApacheIceberg数据湖的演进与挑战传统数据湖(Hive表格式)的缺陷:分区锁定:查询必须显式指定分区字段(如WHEREdt='2025-07-01')。无原子性:并发写入导致数据覆盖或部分可见。低效元数据:LIST操作扫描全部分区目录(云存储成本高)。Iceberg的革新目标:解耦计算引擎与存储格式(支持Spark/Flink/Trino等);提供ACID事务、模式
- 大数据技术之Flink
第1章Flink概述1.1Flink是什么1.2Flink特点1.3FlinkvsSparkStreaming表Flink和Streaming对比FlinkStreaming计算模型流计算微批处理时间语义事件时间、处理时间处理时间窗口多、灵活少、不灵活(窗口必须是批次的整数倍)状态有没有流式SQL有没有1.4Flink的应用场景1.5Flink分层API第2章Flink快速上手2.1创建项目在准备
- Scala 简介
froginwe11
开发语言
Scala简介引言Scala是一种多范式编程语言,它结合了面向对象和函数式编程的特性。自从2003年由MartinOdersky教授在EPFL开发以来,Scala已经成为了在Java虚拟机(JVM)上运行的高效编程语言。本文将为您详细介绍Scala的起源、特点、应用场景以及学习资源。Scala的起源与发展起源Scala的灵感来源于多种编程语言,包括Java、C++、Self、Haskell和ML。
- Hadoop核心组件最全介绍
Cachel wood
大数据开发hadoop大数据分布式spark数据库计算机网络
文章目录一、Hadoop核心组件1.HDFS(HadoopDistributedFileSystem)2.YARN(YetAnotherResourceNegotiator)3.MapReduce二、数据存储与管理1.HBase2.Hive3.HCatalog4.Phoenix三、数据处理与计算1.Spark2.Flink3.Tez4.Storm5.Presto6.Impala四、资源调度与集群管
- SVG格式深度解析与Path应用实战:从原理到企业级全场景开发(实战版)
一、简介在数字图形领域,SVG(ScalableVectorGraphics)凭借其矢量特性、可编辑性和交互能力,成为现代设计和开发的核心工具。本文将从SVG的基础原理出发,深入解析其技术特性,并与主流图像格式(如JPEG、PNG、PLT等)进行对比分析。通过企业级应用案例,结合代码示例和Mermaid图表,帮助开发者全面掌握SVG的应用场景与开发技巧,实现从零到一的高效实践。二、SVG格式的核心
- 大数据分析技术的学习路径,不是绝对的,仅供参考
水云桐程序员
学习大数据数据分析学习方法
阶段一:基础筑基(1-3个月)1.编程语言:Python:掌握基础语法、数据结构、流程控制、函数、面向对象编程、常用库(NumPy,Pandas)。SQL:精通SELECT语句(过滤、排序、分组、聚合、连接)、DDL/DML基础。理解关系型数据库概念(表、主键、外键、索引)。MySQL或PostgreSQL是很好的起点。Java/Scala:深入理解Hadoop/Spark等框架会更有优势。初学者
- HBase 开发:使用Java操作HBase
睡觉的时候我不困
hbasejavapython
第1关:创建表任务描述相关知识如何使用Java连接HBase数据库HBaseConfigurationConnectionFactory创建表HBase2.X创建表编程要求测试说明任务描述本关任务:使用Java代码在HBase中创建表。相关知识为了完成本关任务,你需要掌握:1.如何使用Java连接HBase数据库,2.如何使用Java代码在HBase中创建表。如何使用Java连接HBase数据库J
- 头歌作业-HBase 开发:使用Java操作HBase
http_lizi
hbasejavapython
第一关packagestep1;importjava.io.IOException;importorg.apache.hadoop.conf.Configuration;importorg.apache.hadoop.hbase.HBaseConfiguration;importorg.apache.hadoop.hbase.HColumnDescriptor;importorg.apache.h
- 大数据开发高频面试题:Spark与MapReduce解析
被招网约司机的盯上了好几天实习了六个月,到期被通知不能转正。外包裁员让我去友商我该去吗?offer比较华为状态码浏览器插件嵌入式项目推荐2019秋招总结+云从语音算法面经+银行群面面经科大讯飞语音算法面经语音算法美团一面已挂科大讯飞智能语音方向值得去吗?语音算法oc科大讯飞语音算法二面荣耀一面语音算法面经,已挂荣耀_语音算法工程一面科大讯飞语音一面凉经8.18携程机器学习(语音方向)一面【vivo
- SVG 安装使用教程
小奇JAVA面试
安装使用教程SVG
一、SVG简介SVG(ScalableVectorGraphics,可缩放矢量图形)是一种基于XML的图像格式,用于描述二维图形。与传统的PNG、JPG等位图格式不同,SVG不会因放大而失真,适合展示图标、图表、动画和交互图形。二、SVG的应用场景网站图标和UI元素数据可视化(与ECharts、D3.js等结合)响应式Web设计中的矢量图动画和交互图形三、SVG安装环境(无需专门安装)3.1浏览器
- spark处理kafka的用户行为数据写入hive
月光一族吖
sparkkafkahive
在CentOS上部署Hadoop(Hadoop3.4.1)和Hive(Hive3.1.2)的详细步骤说明。这份指南面向单机安装(伪集群模式),如果需要搭建真正的多节点集群,各节点间的网络互访、SSH免密登录以及配置同步需进一步调整。注意:本指南假设你已拥有root权限或者具有sudo权限,并且系统连接Internet(用于下载安装包)。步骤中的版本号可根据实际需要进行更改。一、环境准备更新系统软件
- PostgreSql、Hbase的安装
月光一族吖
postgresqlhbase数据库
在CentOS8中安装PostgreSQL和HBase,以下是详细步骤,包括使用sudo权限的命令:安装PostgreSQL更新系统包在两台CentOS8上运行以下命令,确保系统是最新的:sudodnfupdate-y安装PostgreSQLCentOS8默认仓库提供PostgreSQL。你可以直接安装所需版本的PostgreSQL:sudodnfinstall-ypostgresql-serve
- Spark 4.0的VariantType 类型以及内部存储
鸿乃江边鸟
大数据SQLsparksparksql大数据
背景本文基于Spark4.0总结Spark中的VariantType类型,用尽量少的字节来存储Json的格式化数据分析这里主要介绍Variant的存储,我们从VariantBuilder.buildJson方法(把对应的json数据存储为VariantType类型)开始:publicstaticVariantparseJson(JsonParserparser,booleanallowDuplic
- SVG VSCode:深度解析与最佳实践
froginwe11
开发语言
SVGVSCode:深度解析与最佳实践引言SVG(可缩放矢量图形)作为一种矢量图形格式,因其高度的可缩放性和矢量特性,在网页设计中得到了广泛应用。而VSCode(VisualStudioCode)作为一款流行的代码编辑器,同样在开发者中备受欢迎。本文将深入探讨SVG在VSCode中的使用,包括其优势、配置方法以及最佳实践。SVG简介什么是SVG?SVG(ScalableVectorGraphics
- 如何学习才能更好地理解人工智能工程技术专业和其他信息技术专业的关联性?
人工智能教学实践
python编程实践人工智能学习人工智能
要深入理解人工智能工程技术专业与其他信息技术专业的关联性,需要跳出单一专业的学习框架,通过“理论筑基-实践串联-跨学科整合”的路径构建系统性认知。以下是分阶段、可落地的学习方法:一、建立“专业关联”的理论认知框架绘制知识关联图谱操作方法:用XMind或Notion绘制思维导图,以AI为中心,辐射关联专业的核心技术节点。例如:AI(机器学习)├─数据支撑:大数据技术(Hadoop/Spark)+数据
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,