参考:
TensorFlow运作方式入门http://www.tensorfly.cn/tfdoc/tutorials/mnist_tf.html
注意以下代码仅为示例
Step1准备数据输入
按需制作训练集
Step2 构造图表(Build the Graph)
2.1定义占位符
在创建session的时候数据才真正流入神经网络
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,
IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
2.2构造inference()
占位符为输入,使数据经过神经网络向前反馈输出预测结果
每一层都创建于一个唯一的tf.name_scope
之下,创建于该作用域之下的所有元素都将带有其前缀
def inference(images, hidden1_units, hidden2_units):
# Hidden 1
with tf.name_scope('hidden1'):
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))),
name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]),
name='biases')
hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
# Hidden 2
with tf.name_scope('hidden2'):
weights = tf.Variable(
tf.truncated_normal([hidden1_units, hidden2_units],
stddev=1.0 / math.sqrt(float(hidden1_units))),
name='weights')
biases = tf.Variable(tf.zeros([hidden2_units]),
name='biases')
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
# Linear
with tf.name_scope('softmax_linear'):
weights = tf.Variable(
tf.truncated_normal([hidden2_units, NUM_CLASSES],
stddev=1.0 / math.sqrt(float(hidden2_units))),
name='weights')
biases = tf.Variable(tf.zeros([NUM_CLASSES]),
name='biases')
logits = tf.matmul(hidden2, weights) + biases
return logits
2.3损失(Loss)
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits,
onehot_labels,
name='entropy')
loss = tf.reduce_mean(cross_entropy, name='entropy_mean')
2.4训练(training)
2.4.1将损失最小化
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=global_step)
2.4.2生成一个变量用于保存全局训练步骤(global training step)的数值
global_step = tf.Variable(0, name='global_step', trainable=False)
step3 启动会话并执行图表
3.1关联图表构建会话
saver = tf.train.Saver() #保存模型:定义一个saver
with tf.Graph().as_default():
with tf.Session() as sess:
init = tf.initialize_all_variables()
sess.run(init)
3.2 feed_dict参数传入sess.run(),真正训练模型,保存模型
for step in xrange(FLAGS.max_steps):
feed_dict = {
images_placeholder: images_feed,
labels_placeholder: labels_feed,
}
_, loss_value = sess.run([train_op, loss],
feed_dict=feed_dict)
saver.save(sess, FLAGS.train_dir, global_step=step)
#保存模型:检查点保存到FLAGS.train_dir,
Step4 恢复并评估模型
with tf.Session() as sess:
model_dir=tf.train.latest_checkpoint('ckpt/')
saver.restore(sess,model_dir)
***=sess.run(***, feed_dict={))