RankLib参数翻译

写在前面,metric2t指标详解:

NDCG(Normalized discounted cumulative gain)即DCG/IDCG
CG(cumulative gain)
DCG(Discounted Cumulative Gain)
MAP(Mean Average Precision)
MRR(Mean Reciprocal Rank)

Usage: java -jar RankLib.jar
Params:
[+] Training (+ tuning and evaluation)
-train 训练数据
-ranker 指定要使用的排名算法
0: MART (gradient boosted regression tree)
1: RankNet
2: RankBoost
3: AdaRank
4: Coordinate Ascent
6: LambdaMART
7: ListNet
8: Random Forests
[ -feature ] 特征描述文件:列出要学习的特征,如果不指定,默认使用所有特征。
[ -metric2t ] Metric to optimize on the training data. Supported: MAP, NDCG@k, DCG@k, P@k, RR@k, ERR@k (default=ERR@10)
[ -gmax

] 交叉验证训练模型的目录 Directory for models trained via cross-validation (default=not-save)
[ -kcvmn ] Name for model learned in each fold. It will be prefix-ed with the fold-number (default=empty)
[-] RankNet-specific parameters RankNet特定参数
[ -epoch ] 训练迭代次数 The number of epochs to train (default=100)
[ -layer ] 隐含层个数 The number of hidden layers (default=1)
[ -node ] 每层隐含节点个数 The number of hidden nodes per layer (default=10)
[ -lr ] 学习率 Learning rate (default=0.00005)
[-] RankBoost-specific parameters RankBoost特定参数
[ -round ] 训练迭代次数 The number of rounds to train (default=300)
[ -tc ] 搜索的阈值候选个数 Number of threshold candidates to search. -1 to use all feature values (default=10)
[-] AdaRank-specific parameters AdaRank特定参数
[ -round ] 训练迭代次数 The number of rounds to train (default=500)
[ -noeq ] Train without enqueuing too-strong features (default=unspecified)
[ -tolerance ] 连续两轮学习之间的误差 Tolerance between two consecutive rounds of learning (default=0.002)
[ -max ] 一个特征可以被连续选择而不改变性能的最大次数 The maximum number of times can a feature be consecutively selected without changing performance (default=5)
[-] Coordinate Ascent-specific parameters
[ -r ] The number of random restarts (default=5)
[ -i ] The number of iterations to search in each dimension (default=25)
[ -tolerance ] Performance tolerance between two solutions (default=0.001)
[ -reg ] Regularization parameter (default=no-regularization)
[-] {MART, LambdaMART}-specific parameters LanbdaMART特定参数
[ -tree ] 树的个数 Number of trees (default=1000)
[ -leaf ] 每个树的叶子个数 Number of leaves for each tree (default=10)
[ -shrinkage ] 学习率 Shrinkage, or learning rate (default=0.1)
[ -tc ] 树分割时的候选特征个数 Number of threshold candidates for tree spliting. -1 to use all feature values (default=256)
[ -mls ] 一个叶子最少的样本个数 Min leaf support -- minimum #samples each leaf has to contain (default=1)
[ -estop ] Stop early when no improvement is observed on validaton data in e consecutive rounds (default=100)
[-] Random Forests-specific parameters 随机森林特定参数
[ -bag ] Number of bags (default=300)
[ -srate ] Sub-sampling rate (default=1.0)子集采样率
[ -frate ] Feature sampling rate (default=0.3) 特征采样率
[ -rtype ] Ranker to bag (default=0, i.e. MART)
[ -tree ] Number of trees in each bag (default=1) 树个数
[ -leaf ] Number of leaves for each tree (default=100) 每个树的叶节点个数
[ -shrinkage ] Shrinkage, or learning rate (default=0.1) 学习率
[ -tc ] 树分割时使用的候选特征阈值个数 Number of threshold candidates for tree spliting. -1 to use all feature values (default=256)
[ -mls ] Min leaf support -- minimum #samples each leaf has to contain (default=1)
[ -estop ] Stop early when no improvement is observed on validaton data in e consecutive rounds (default=100)
[+] Testing previously saved models 测试已经保存的模型
-load 加载模型 The model to load
-test 测试数据Test data to evaluate the model (specify either this or -rank but not both)
-rank 对制定文件中的样本排序,与-test不能同时指定 Rank the samples in the specified file (specify either this or -test but not both)
[ -metric2T ] Metric to evaluate on the test data (default=ERR@10)
[ -gmax

转载于:https://www.cnblogs.com/yanjunhelloworld/p/6021995.html

你可能感兴趣的:(java,数据结构与算法)