- DeepSeek强化学习(Reinforcement Learning)基础与实践
Evaporator Core
强化学习#DeepSeek快速入门人工智能python数据库tornado强化学习deepseek
引言强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,专注于训练智能体(Agent)在环境中通过试错来学习最优策略。与监督学习和无监督学习不同,强化学习通过奖励信号来指导智能体的行为,使其能够在复杂的环境中做出决策。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练强化学习模型。本文将详细介绍如何使用DeepSeek进行强化学习的基础与实践,并通
- 机器学习笔记——特征工程
好评笔记
补档机器学习笔记人工智能AIGC深度学习计算机视觉面试八股
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自
- 论文学习3:深度学习增强的光声成像(PAI)的最新进展(综述)
superace7911
基于机器学习的光声图像处理机器学习图像处理
原文链接有空可以细看,这里中列出了文中提到的部分研究结果写作大纲1.引言光声成像(PAI)的介绍,它结合了光学和超声成像的优点,为生物医学成像提供了一种有前景的模态。深度学习(DL)在解决PAI中存在的技术限制(如硬件限制、生物特征信息缺乏等)方面的潜力。2.DL方法的原理介绍DL的子集:监督学习、无监督学习和强化学习。详细说明代表性DL架构:卷积神经网络(CNN)、U-形神经网络(U-Net)和
- DeepSeek革命性整合:零代码实现办公自动化全流程(Excel/PPT/Word+AI开发实战)——小白也能玩转的AI生产力核弹
Leaton Lee
excelpowerpointworddeepseekpython
关键词:DeepSeek办公自动化、AI生成PPT、Excel智能分析、Word合同助手、Python实战前言:当DeepSeek遇见经典办公三件套,效率爆炸的化学反应该怎么做?你是否还在为这些场景抓狂?凌晨2点对着空白PPT抓耳挠腮在Excel海量数据中迷失方向反复修改合同条款到怀疑人生今天我要揭秘的DeepSeek+经典办公工具组合技,将彻底颠覆你的工作方式!通过本文,你将掌握:✅5分钟生成专
- 初学者推荐学习AI的路径
ProgramHan
学习人工智能
学习人工智能的路径可以分为基础知识、编程技能、机器学习、深度学习、数据处理与可视化、自然语言处理(NLP)、计算机视觉(CV)、强化学习、实践项目和持续学习几个阶段。以下是一个简要的路径:1️⃣基础知识数学基础(线性代数、微积分、概率统计)编程基础(Python/R等语言)算法与数据结构2️⃣机器学习基础理解监督学习(如回归、分类)、无监督学习(如聚类、PCA)掌握机器学习库(如scikit-le
- ES6-Set、WeekSet数据结构
喜欢代码的新之助
es6数据结构javascript
Set、WeakSet数据结构Set数据结构ES6提供了新的数据结构Set,类似于数组,但是成员的值都是唯一的,没有重复的值Set本身是一个构造函数,用来生成Set数据结构consts=newset();set函数可以接受一个数组作为参数,用来初始化size属性:Set数据结构中的一个属性,用于计算当前数据结构中包含了多少值consts=newSet();console.log(s.size);/
- 人工智能的崛起与未来发展趋势分析
智能计算研究中心
其他
内容概要人工智能作为一项颠覆性技术,近年来发展迅猛,正逐渐渗透到我们生活的每个角落。它不仅改变了人类的工作方式,还在医疗、金融、教育、交通等多个领域展现了巨大的应用潜力。通过理解人工智能的现状,我们可以更清晰地识别当前技术进展和市场需求,以及面临的挑战。领域应用实例发展现状医疗智能诊断、药物研发提高诊断准确率,缩短研发周期金融风险评估、智能投顾实现个性化服务与高效决策教育自适应学习系统提供个性化学
- 您的时钟快了-解决方法之一记录
傲娇的小小云
chrome
最近做了个前端项目,自己推到服务期上,自己访问没有问题,但是测试同学一访问就会报这种错。:百度了半天,也排查了很久。在确认程序没有问题后最终发现了问题解决方法之一1。其实就是chrome浏览器版本过低,升级一下版本就可以了。(⚫︎ー⚫︎)balalala~网上还有其他方法,我也没试给大家贴几个可以参考的链接:浏览器无法打开网页,提示「您的时钟快了」该如何解决?-知乎(zhihu.com)(1条消息
- 深度学习与搜索引擎优化的结合:DeepSeek的创新与探索
m0_74825634
面试学习路线阿里巴巴深度学习搜索引擎人工智能
目录引言1.传统搜索引擎的局限性2.深度学习在搜索引擎中的作用3.DeepSeek实现搜索引擎优化的关键技术3.1神经网络与搜索引擎优化3.2自然语言处理与查询理解3.3深度强化学习与搜索结果排序4.DeepSeek的深度学习架构4.1?查询解析与语义理解4.2?搜索排名与相关性排序4.3?个性化推荐与用户行为分析5、总结引言随着人工智能(AI)技术的迅速发展,深度学习(DeepLearning)
- DeepSeek 15天指导手册——从入门到精通 PDF(附下载)
d3soft
pdfdeepseekAI教程
DeepSeek使用教程系列--DeepSeek15天指导手册——从入门到精通pdf下载:https://pan.baidu.com/s/1PrIo0Xo0h5s6Plcc_smS8w?pwd=1234提取码:1234或https://pan.quark.cn/s/2e8de75027d3《DeepSeek15天指导手册——从入门到精通》以系统化学习路径为核心,通过六大模块帮助用户逐步掌握AI工具
- 用人类反馈微调大模型,InstructGPT 让 GPT-3 脱胎换骨
人工智能
用人类反馈微调大模型,InstructGPT让GPT-3脱胎换骨本文展示了一种通过利用人类反馈进行微调,使大语言模型在广泛任务中契合用户意图的方法。我们从一组标注员编写的提示以及通过OpenAIAPI提交的提示开始,收集了一个数据集,其中包含标注员展示的期望模型行为,利用这些数据通过监督学习对GPT-3进行微调。接着,我们收集模型输出的排名数据集,使用人类反馈强化学习对这个经过监督学习训练的模型进
- DeepSeek 和 Qwen 模型快速部署指南
moton2017
深度学习运维模型部署DeepSeekQwen大型语言模型LLM人工智能AI
导读:DeepSeek-V3&DeepSeek-R1模型对比特性DeepSeek-V3DeepSeek-R1模型大小总参数量6710亿(671B),MoE架构,每个token激活370亿参数总参数量与V3相当,基于DeepSeek-V3-Base,采用类似的MoE架构训练方法包含预训练、监督微调(SFT)和强化学习(RL),使用14.8兆高品质文本进行预训练引入多阶段训练流程,冷启动微调后进行推理
- DeepSeek 深度赋能客服岗:效率与洞察的双重飞跃
AI_DL_CODE
人工智能深度学习DeepSeek工作助理
摘要:本文聚焦于DeepSeek在客服服务岗的应用。它能凭借自然语言处理技术,快速理解客户咨询,精准提供解答方案;自动生成标准化、个性化的回复话术,大幅提升客服效率;利用机器学习对客户反馈进行深度分析,挖掘潜在需求与市场趋势。通过电商、互联网服务等行业案例,展现其实际成效。使用时需注意数据质量与隐私保护,促进与人工客服协同配合,持续优化学习。DeepSeek为客服工作带来变革,助力企业提升服务质量
- 1秒响应、90%决策准确率!京东商家智能助手的技术探索
京东零售技术
人工智能大模型
引言多智能体的架构演进过程:第一阶段:B商城工单自动回复,LLM和RAG结合知识库应答,无法解决工具调用。第二阶段:京东招商站,单一Agent处理知识库问答和工具调用,准确率低&LLM模型幻觉,场景区分度差。第三阶段:京麦智能助手,引入multi-agent架构,master+subagents协同工作模式,把问题分而治之,显著提升准确率。商家助手的算法底座是基于大语言模型(LLM)构建的Mul
- 深度强化学习算法在金融交易决策中的优化应用【附数据】
算法与数据
算法
金融数据分析与建模专家金融科研助手|论文指导|模型构建✨专业领域:金融数据处理与分析量化交易策略研究金融风险建模投资组合优化金融预测模型开发深度学习在金融中的应用擅长工具:Python/R/MATLAB量化分析机器学习模型构建金融时间序列分析蒙特卡洛模拟风险度量模型金融论文指导内容:金融数据挖掘与处理量化策略开发与回测投资组合构建与优化金融风险评估模型期刊论文✅具体问题可以私信或查看文章底部二维码
- 机器学习基础
dringlestry
机器学习人工智能
了解机器学习的基本概念,如监督学习、无监督学习、强化学习、模型评估指标(准确率、召回率、F1分数等)。机器学习(MachineLearning,ML)是人工智能(AI)的一个分支,它使计算机能够通过数据和经验自动改进,而无需明确编程。机器学习可以根据学习方式和数据的有无,分为以下几种基本类型:1.监督学习(SupervisedLearning)监督学习是一种机器学习类型,其中模型通过带标签的数据进
- 2024SCD中文期刊目录新增、剔除
m0_55576290
论文阅读
序号刊名ISSNCN是否新增25光学学报0253-223931-1252/O4新增30大学物理实验1007-293422-1228/O4新增34声学技术1000-363031-1449/TB新增41量子光学学报1007-665414-1187/O4新增49化学教学1005-662931-1006/G4新增53ChineseJournalofCatalysis0253-983721-1601/O6新
- 3D晶格与图论:BFS在空间网络中的应用
t0_54coder
3d图论宽度优先个人开发
引言在现代计算科学中,3D晶格模拟是许多物理、化学和材料科学研究中的重要工具。通过将3D空间中的每个单元看作图论中的顶点(Vertex),并通过边(Edge)连接相邻的单元,可以构建一个复杂的图结构来模拟和分析这些晶格的特性。本文将探讨如何使用BoostGraphLibrary(BGL)来实现这一模拟,并通过广度优先搜索(Breadth-FirstSearch,BFS)来识别和统计晶格中的孤立互联
- 人工智能:从基础到前沿
顾漂亮
人工智能深度学习windows
目录目录1.引言2.人工智能基础2.1什么是人工智能?2.2人工智能的历史2.3人工智能的分类3.机器学习3.1机器学习概述3.2监督学习3.3无监督学习3.4强化学习4.深度学习4.1深度学习概述4.2神经网络基础4.3卷积神经网络(CNN)4.4循环神经网络(RNN)5.自然语言处理(NLP)5.1NLP概述5.2文本预处理5.3词嵌入5.4语言模型6.计算机视觉6.1计算机视觉概述6.2图像
- 深入浅出机器学习:概念、算法与实践
倔强的小石头_
AI机器学习算法人工智能
目录引言机器学习的基本概念什么是机器学习机器学习的基本要素机器学习的主要类型监督学习(SupervisedLearning)无监督学习(UnsupervisedLearning)强化学习(ReinforcementLearning)机器学习的一般流程总结引言在当今数字化时代,数据量呈爆炸式增长。机器学习作为一门多领域交叉学科,致力于让计算机系统从数据中自动学习模式和规律,进而实现对未知数据的预测和
- 区块链相关方法-波特五力分析模型
礼小七
区块链网络
一、定义:波特五力分析模型(Porter'sFiveForcesFramework)是迈克尔・波特(MichaelPorter)于1979年提出的一种用于分析行业竞争态势的工具。它通过考察五种力量的相互作用来评估一个行业的吸引力和竞争环境,这五种力量分别是现有竞争者的威胁、潜在进入者的威胁、替代品的威胁、供应商的议价能力和购买者的议价能力。二、各要素详细介绍现有竞争者的威胁(ThreatofExi
- ε-贪心算法:在探索与利用之间寻找平衡
Chen_Chance
贪心算法算法
ε-贪心算法:在探索与利用之间寻找平衡在强化学习领域,智能体需要在环境中采取行动以最大化累积奖励。这个过程涉及到两个关键的决策因素:探索(exploration)和利用(exploitation)。探索是指尝试新的行为以发现更好的策略;而利用是指采用已知的最佳行为以获得奖励。ε-贪心算法正是为了在这两个因素之间找到一个平衡点。ε-贪心算法的基本原理ε-贪心算法的核心思想非常简单:以概率ϵ\epsi
- DeepSeek爆火全网!清华团队104页教程+1000个神级提示词,手把手教你玩转AI神器
后端
标题:DeepSeek爆火全网!清华团队104页教程+1000个神级提示词,手把手教你玩转AI神器正文:一、DeepSeek最新动态:开源革命与政务应用双突破开源计划引爆开发者圈DeepSeek官方宣布将于下周启动“OpenSourceWeek”,开源5个核心代码库,涵盖在线服务基础组件、推理模型部署框架等关键技术。这些代码库已通过实战测试,支持国产硬件适配,开发者可基于此快速构建企业级AI应用。
- 基于PLC的泳池水清洁系统(论文+源码)
云山工作室
单片机毕业设计毕设PLC
游泳池水清洁工艺流程如图2-1所示。从游泳池底部,通过循环水泵1或者循环水泵2将游泳池中的水抽出,进行各项水质检测,包括使用温度传感器检测温度,使用余氯传感器检测余氯,使用浊度传感器检测浊度,使用PH检测器检测PH值,通过臭氧传感器检测臭氧。根据检测的水质情形,通过采用化学方法(例如加药等),和物理方法(例如砂滤等),进行水质处理,将处理好的,达到一定水质标准要求的“净水”通过注水口回注到游泳池。
- C++:使用 SFML 创建强化学习迷宫场景
煤炭里de黑猫
c++开发语言
在强化学习中,迷宫通常作为一种环境,供智能体(Agent)在其中进行探索和学习。通过设计合适的环境,我们可以训练模型让其通过迷宫找到最优路径。本文将介绍如何使用C++和SFML库来创建一个迷宫场景,并为强化学习模型提供一个可视化的平台。1.安装和配置SFMLSFML是一个开源的跨平台图形库,适用于C++开发。你可以使用它来创建窗口、处理图形、事件、音频等。本项目使用的是SFML的图形模块。配置步骤
- DeepSeek赋能智能交通流量预测与优化:告别拥堵的未来
人工智能专属驿站
计算机视觉人工智能
DeepSeek赋能智能交通流量预测与优化:告别拥堵的未来在城市化快速发展的今天,交通拥堵已成为全球大中城市的“通病”,严重影响人们的出行效率和生活质量。然而,随着人工智能技术的不断进步,特别是DeepSeek这样的先进模型的出现,交通流量预测与优化迎来了新的曙光。DeepSeek凭借其强大的时空预测模型和强化学习框架,为交通流量预测和信号优化提供了全新的解决方案。它能够整合多源数据,包括地磁传感
- DeepSeek的架构设计
程序猿000001号
DeepSeek架构设计
DeepSeek的架构设计一、基础架构层1.超大规模算力集群跨地域异构计算:南京/临港等多地超算中心构建混合集群,10万+GPU卡规模(含H100/A100等),通过自研RDMA网络实现μs级延迟能效优化:采用液冷+余热回收技术,PUE<1.1,算力密度达50kW/机柜故障自愈:基于强化学习的节点健康预测系统,实现硬件故障30秒内隔离2.数据工场体系多模态处理管道:文本:20PB语料库,支持164
- 仅用1年成为DeepMind顶梁柱,John Jumper博士毕业7年拿诺奖,开启蛋白折叠新时代
「我以为我只有10%的机会获得诺贝尔化学奖」,得知获奖消息后,JohnJumper在电话采访中笑着说道。他的语气中带着谦逊与感慨,而这份殊荣的背后,则是AlphaFold2带来的科学革命,彻底改变了蛋白质结构预测的方式。截至目前,已有来自190个国家的200多万人使用这一工具,它不仅加速了新药研发和疾病研究,也为基础科学探索提供了前所未有的支持,深刻影响了生命科学的未来发展。值得一提的是,Jump
- HTML/CSS中兄弟选择器
~废弃回忆 �༄
HTMLcsshtmlcss3HTML/CSS中兄弟选择器
1.相邻兄弟选择器:语法:选择器1+选择器22.通用兄弟选择器:语法:选择器1~选择器23.实例:/*div中后紧紧相邻的兄弟P元素(谁在我下铺的兄弟)--相邻兄弟选择器*/div+p{/*语文才会变色.因为兄弟指的是向下紧紧挨着的兄弟*/color:red;}/*选中div后面所有的兄弟元素(谁在我下铺的所有兄弟)--通用兄弟选择器*/div~p{color:aqua;}课程语文数学英语化学4.
- 什么是语料清洗、预训练、指令微调、强化学习、内容安全; 什么是megatron,deepspeed,vllm推理加速框架
ZhangJiQun&MXP
教学2021论文2024大模型以及算力人工智能
什么是语料清洗、预训练、指令微调、强化学习、内容安全目录什么是语料清洗、预训练、指令微调、强化学习、内容安全语料清洗预训练指令微调强化学习内容安全什么是megatron,deepspeed,vllm推理加速框架语料清洗语料清洗是对原始文本数据进行处理的过程,旨在去除数据中的噪声、错误和不相关信息,提升数据质量。比如剔除包含大量乱码、格式错误、广告垃圾信息的文本,以及与目标任务无关的内容等。高质量的
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分