- 2.Golang goroutine详解:轻量级并发的艺术
GO兔
Go基础golang开发语言
欢迎大家点赞,收藏,评论,转发,你们的支持是我最大的写作动力作者:GO兔博客:https://luckxgo.cn引言在Golang的世界里,有个小家伙彻底改变了我们编写并发程序的方式——它就是goroutine!如果你还在用传统线程写并发,那简直就像在用牛拉火车。今天这篇笔记,咱们就来揭开goroutine的神秘面纱,看看这个轻量级的并发单元是如何让Go程序高效运行的。技术要点1.什么是goro
- Spring Cloud(微服务部署与监控)
白仑色
Spring系列springcloud微服务spring微服务部署服务监控健康检查
摘要在微服务架构中,随着服务数量的增长和部署复杂度的提升,如何高效部署、持续监控、快速定位问题并实现自动化运维成为保障系统稳定性的关键。本文将围绕SpringCloud微服务的部署与监控展开,深入讲解:微服务打包与部署方式(JAR/Docker/Kubernetes)如何构建CI/CD流水线服务健康检查与自动恢复机制Prometheus+Grafana实现指标可视化监控ELK实现日志集中管理Sky
- Excel高效转Json工具类详解
你一身傲骨怎能输
游戏工具链exceljson
文章摘要该工具类提供Excel到Json的转换功能,主要包含:ExcelToJsonToolEditor:核心编辑器类,处理Excel批量/单表转换、文件路径操作类型定义:TypeValue存储字段信息,JsonKeyType标识键类型转换流程:读取Excel→生成Json→自动创建对应C#配置类代码扩展性:支持指定表转换、错误处理、代码模板化生成关键方法:DoXlsxToJson处理单表转换,G
- LoRA微调详解:如何为AIGC模型节省90%显存
SuperAGI2025
AI大模型应用开发宝典AIGCai
LoRA微调详解:如何为AIGC模型节省90%显存关键词:LoRA、低秩适应、AIGC模型、参数高效微调、显存优化摘要:在AIGC(人工智能生成内容)领域,大模型(如GPT-3、LLaMA、StableDiffusion)的微调需要消耗海量显存,普通用户或企业难以负担。本文将深入解析LoRA(Low-RankAdaptation,低秩适应)这一参数高效微调技术,通过生活类比、数学原理、代码实战和应
- topk------提取张量极值的关键函数
AI扶我青云志
人工智能
torch.topk()是PyTorch中用于高效提取张量极值的关键函数,可返回指定维度上最大或最小的k个元素及其索引。以下从参数、作用和应用场景三方面详解:一、核心参数详解函数签名:torch.topk(input,k,dim=None,largest=True,sorted=True,*,out=None)参数类型默认值说明inputTensor必填输入张量kint必填需返回的元素数量dimi
- 【Java面试】讲讲Redis的Cluster的分片机制
用心分享技术
Java面试题java面试redis
RedisCluster分片机制详解1.分片核心机制:哈希槽(HashSlot)RedisCluster采用虚拟哈希槽分区,将数据分散到16384个固定槽位(slot)上,每个主节点负责一部分槽位。键的槽位计算方式为:slot=CRC16(key)%16384#仅计算键中`{}`内的内容(如`user:{1000}`仅哈希`1000`)分片流程示例:集群有3个主节点,槽分配为:节点A:0-5460
- [ 渗透测试面试篇 ] 渗透测试面试题大集合(详解)(4-2)XSS注入相关面试题
寒蝉听雨[原ID_PowerShell]
面试总结渗透测试自学篇渗透测试面试分享渗透测试升职加薪网络安全XSS注入面试题网络安全面试题1024程序员节
博主介绍博主介绍:大家好,我是_PowerShell,很高兴认识大家~✨主攻领域:【渗透领域】【数据通信】【通讯安全】【web安全】【面试分析】点赞➕评论➕收藏==养成习惯(一键三连)欢迎关注一起学习一起讨论⭐️一起进步文末有彩蛋作者水平有限,欢迎各位大佬指点,相互学习进步!渗透方向的岗位,涉及到的知识点是很广泛的。这里我总结了整个一系列的面试题,可能没有覆盖到全部的知识面,但是应该是比较全面的
- Linux编程——Makefile 使用
在先前的文章中,我们已经学习了gcc和gdb的使用。本节,我们将介绍Makefile的使用。Makefile带来的好处就是——“自动化编译”,一但写好,只需要一个make命令,整个工程便可以完全编译,极大的提高了软件的开发效率(特别是对于那些项目较大、文件较多的工程)。make是一个命令工具,最主要也是最基本的功能就是根据makefile文件中描述的源程序至今的相互关系来完成自动编译、维护多个源文
- 从数据抓取到智能分类:用 LangChain + 爬虫构建自动化工作流的实战笔记
大模型之路
大模型(LLM)人工智能langchain
一、从人工到自动化的迫切需求在数字化时代,信息的快速获取与处理成为个人和组织高效运转的关键。然而,许多重复性强、耗时长且缺乏创造性的任务,如定期收集和整理网络信息并制作成特定格式的内容,依然占据着人们大量的时间和精力。本文作者就面临这样的困境:每两周需花费数小时访问多个大学网站,提取活动信息,手动将其整理成繁琐的HTML表格,并确保在Outlook中格式正确无误。这一过程不仅涉及大量枯燥的重复劳动
- 学习笔记(28):随机噪声的原理、作用及代码实现详解
宁儿数据安全
#机器学习学习笔记python
学习笔记(28):随机噪声的原理、作用及代码实现详解一、什么是随机噪声?为什么需要添加?在机器学习中,随机噪声是指数据中无法用特征解释的随机波动,通常符合某种概率分布(如正态分布)。在房价模拟中添加噪声的核心原因如下:1.模拟真实世界的不确定性真实房价除了受面积、房龄影响,还受装修情况、学区、交通、政策等未被建模的特征影响,这些因素的综合效应可抽象为“噪声”。示例:两套面积和房龄相同的房子,房价可
- sqlmap使用详解
inrese
最近需要使用sqlmap工具,在此将学习记录记录下来。一、参数选项1、选项:-h,--help显示基本帮助信息并退出-hh显示高级帮助信息并退出--version显示程序的版本号并退出-vVERBOSE详细级别:0-6(默认为1)2、目标:必须至少提供这些选项之一来定义-uURL,--url=URL目标URL(例如“http://www.site.com/vuln.php?id=1”)-dDIRE
- 归并排序详解
创建两个临时数组存储待合并的子数组使用双指针法依次比较两个子数组的元素将较小的元素放入原数组的对应位置处理剩余未合并的元素前言1.算法概述归并排序是一种采用分治法(DivideandConquer)策略的排序算法,由约翰·冯·诺伊曼在1945年提出。它的核心思想是将一个大问题分解成若干个小问题,递归解决小问题后,再将结果合并起来。分治策略分解:将当前区间一分为二解决:递归地对两个子区间进行排序合并
- 学习笔记(29):训练集与测试集划分详解:train_test_split 函数深度解析
宁儿数据安全
#机器学习学习笔记深度学习
学习笔记(29):训练集与测试集划分详解:train_test_split函数深度解析一、为什么需要划分训练集和测试集?在机器学习中,模型需要经历两个核心阶段:训练阶段:用训练集数据学习特征与目标值的映射关系(如线性回归的权重)。测试阶段:用测试集评估模型在未见过的数据上的表现,避免“过拟合”(模型只记住训练数据的噪声,无法泛化到新数据)。类比场景:学生通过“练习题”(训练集)学习知识,再通过“考
- 在mac下手动编译迁移的android版webrtc组件
jwybobo2007
WebRTCwebrtcandroid
我原先使用的android版webrtc是在linux下编译的,现在因为某些原因需要把整个库迁移到mac下编译。把代码迁移完后,正常是需要通过gclientsync重新构建编译环境,但是由于网络限制等方面原因,会导致完成的比较慢。在摸索一阵后,找到了一种方式可以快速的编译出webrtc,步骤如下:假设已经有NDK、depot_tools、ninja,并且可以正常使用了1.修改src/build/c
- 【Torch】nn.Dropout算法详解
油泼辣子多加
深度学习算法
1.定义nn.Dropout是PyTorch中用于防止神经网络过拟合的正则化层。其核心思想是在训练阶段随机“丢弃”(置零)部分神经元的输出,以减少网络对特定神经元的过度依赖;在推理阶段则保持所有神经元输出不变。2.输入与输出输入(Input)任意形状的浮点张量(如torch.float32、torch.float64等),常见于全连接层或卷积层的激活输出。输出(Output)与输入张量形状、dty
- Spring Cloud测试 I/O error on GET request for “http://springcloud-provider/provider/get/emplo
IT莫染
bug笔记javaspringcloud
连接拒绝错误错误提示:页面I/OerroronGETrequestfor“http://springcloud-provider/provider/get/emplo后台控制台:Connectionrefused:connect;nestedexceptionisjava.net.ConnectException:Springcloud测试出现的错误:连接拒绝出错原因是因为provider开启的3
- 详解 websocket 协议
Super乐
PHPwebsocketwebsocket
一、websocket是什么?websocket是一个基于应用层的网络协议,建立在tcp协议之上,和http协议可以说是兄弟的关系,但是这个兄弟有点依赖http,为什么这么说呢?我们都知道HTTP实现了三次握手来建立通信连接,实际上websocket的创始人很聪明,他不想重复的去造轮子,反正我兄弟已经实现了握手了,我干嘛还要重写一套呢?先让它去冲锋陷阵呢,我坐收渔翁之利不是更香吗,所以一般来说,我
- CSS3 常见选择器(属性、伪类、伪元素、组合)面试详解
1加1等于
javascript实战javascript前端css3
本文详细介绍了日常中常用的几种选择器,包括属性选择器、伪类选择器、伪元素选择器、组合选择器等等本文目录1.属性选择器2.伪类选择器3.伪元素选择器4.组合选择器1.属性选择器属性选择器允许根据元素的属性及其值来选择元素。常见的属性选择器有以下几种形式:[attribute]:选择具有指定属性的元素。[attribute=value]:选择属性值精确等于指定值的元素。[attribute^=valu
- 《dlib库中的聚类》算法详解:从原理到实践
A小庞
算法算法聚类数据挖掘机器学习c++
一、dlib库与聚类算法的关联1.1dlib库的核心功能dlib是一个基于C++的机器学习和计算机视觉工具库,其聚类算法模块提供了多种高效的无监督学习工具。聚类算法在dlib中主要用于:数据分组:将相似的数据点划分为同一簇。特征分析:通过聚类结果发现数据潜在的结构。降维辅助:结合聚类结果进行特征选择或数据压缩。dlib支持的经典聚类算法包括K-Means和ChineseWhispers,适用于图像
- 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建(续)
格图素书
算法人工智能
目录3.4点云数据精简3.4.1数据精简的要求3.4.2经典精简算法分析3.5点云三维重建算法3.5.1曲面重建方式的分类3.5.2点云数据的三角剖分3.5.3Delaunay三角剖分算法3.5.4贪婪投影三角化算法3.5.5泊松曲面重建算法4特征保留优化的点云精简4.1引言4.2点云精简的思想4.3基于图信号的特征保留优化的点云精简算法4.3.2定义密度均匀性损失4.4点云精简实验结果及分析5隧
- Java领域Spring Cloud网关的配置与使用
Java大师兄学大数据AI应用开发
javaspringcloud开发语言ai
Java领域SpringCloud网关的配置与使用关键词:SpringCloudGateway、微服务网关、路由配置、过滤器、负载均衡、服务发现、API网关摘要:本文深入探讨SpringCloudGateway在Java微服务架构中的核心作用与实现原理。文章从网关的基本概念出发,详细解析其架构设计、路由配置、过滤器链等核心功能,并通过实际代码示例展示如何配置和使用SpringCloudGatewa
- 第十一节:Vben Admin 最新 v5.0 (vben5) + Python Flask 快速入门 - 角色菜单授权
锅锅来了
Vbenvben5VbenAdminpython3后台管理框架
Vben5系列文章目录基础篇✅第一节:VbenAdmin最新v5.0(vben5)+PythonFlask快速入门✅第二节:VbenAdmin最新v5.0(vben5)+PythonFlask快速入门-PythonFlask后端开发详解(附源码)✅第三节:VbenAdmin最新v5.0(vben5)+PythonFlask快速入门-对接后端登录接口(上)✅第四节:VbenAdmin最新v5.0(v
- Linux系统之gsettings详解
门前灯
运维linux运维gsettings
gsettings是GNOME桌面环境的配置管理工具,基于GSettings和D-Bus服务,允许用户通过命令行查看、修改、监控GNOME系统的设置项(如桌面背景、屏幕保护、字体缩放等)。它通过DConf数据库存储配置,支持多用户隔离,避免配置冲突。功能概述配置项管理查询、设置、重置GNOME桌面的键值(Key)配置。支持实时监控配置项变化。多用户支持普通用户与root用户的配置分别存储在各自的D
- Linux系统之install-info 命令详解
门前灯
linux服务器运维install-info
install-info用于向Info目录文件(DIR-文件)中添加或删除INFO-文件的条目。INFO-文件和DIR-文件是必填参数,除非使用--info-file或--dir-file(或--info-dir)选项指定。默认情况下,若未指定条目(--entry或--name),条目将从INFO-文件本身的信息中自动提取。基本语法install-info[选项]...[INFO-文件[目录-文件
- JVM调优实战 Day 13:微服务架构中的JVM优化
在未来等你
JVM调优实战JVMJava性能优化调优虚拟机
【JVM调优实战Day13】微服务架构中的JVM优化文章标签jvm调优,微服务架构,JVM性能优化,Java内存管理,JVM参数配置,云原生应用,Java开发,架构师成长之路文章简述在微服务架构中,JVM的调优不再只是单个应用的问题,而是涉及多个服务实例、容器化部署和动态伸缩等复杂场景。本文作为“JVM调优实战”系列的第13天,深入探讨了微服务环境下JVM优化的核心技术点,包括内存分配策略、GC调
- HTTP协议详解与深入理解
菜就多练少说
计算机网络http网络协议网络
一、什么是HTTP?HTTP(HyperTextTransferProtocol,超文本传输协议)是互联网上应用最广泛的一种通信协议,它定义了客户端与服务器之间通信的标准规则,主要用于浏览器与服务器之间的数据交换。HTTP是万维网的基础,网页浏览、API调用、数据交互等都基于HTTP协议完成。二、HTTP的基本原理HTTP属于应用层协议,采用请求-响应模式(Request-Response)。基本
- LangChain + Ollama + Spring AI:打造能自动决策的智能 Agent
大模型应用
langchainspring人工智能llamaLLMprompt
AI的出现极大的提升了生产力,对我们程序员来说,积极的拥抱新技术是非常有必要的。今天我们基于LangChain框架,创建一个我们自己的Agent,并集成我们自己的MCP工具。体验一把LangChain。我的系统是Windows。在开始之前,我们需要:•使用Ollama运行deepseek-r1:7b•使用Node.js开发的MCPWeatherService工具•使用Flask提供WebAPI服务
- 【深度学习-Day 33】从零到一:亲手构建你的第一个卷积神经网络(CNN)
吴师兄大模型
深度学习入门到精通深度学习cnn人工智能python大模型卷积神经网络(CNN)机器学习
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 52-【JavaScript-Day 52】告别“野路子”代码:ESLint、Prettier与Web安全入门
吴师兄大模型
javascript开发语言ecmascriptjava人工智能大模型ESLint
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 通配符SSL证书详解
后端
一、核心概念通配符SSL证书(WildcardSSLCertificate)是一种特殊类型的SSL证书,允许用户使用单一证书为同一主域名下的所有一级子域名提供HTTPS加密。其核心在于使用通配符“*”(星号)代表任意的一级子域名名称。二、主要特点一证多保:仅需一个证书,即可保护主域名下无限数量的一级子域名。例如,证书颁发给*.example.com,就能自动保护www.example.com、ma
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多