Unity Shader:非真实感渲染

本文同时发布在我的个人博客上:https://dragon_boy.gitee.io

卡通风格渲染

渲染轮廓线

  • 基于观察角度和表面法线的轮廓线渲染:使用视角方向和表面法线的点乘结果来得到轮廓线的信息。
  • 过程式几何轮廓线渲染。使用两个Pass,第一个Pass渲染背面的面片,并使用某些技术让它的轮廓可见;第二个Pass再正常渲染正面的面片。适用于平滑模型。
  • 基于图像处理的轮廓线渲染:即之前的边缘检测。
  • 基于轮廓边检测得轮廓线渲染:我们可以检测出精确得轮廓边,然后直接渲染它们。检测一条边是否是轮廓边的公式如下:

其中,和分别表示两个相邻三角面片的法线,是视角到该边上任意顶点的方向。上述公式的本质在于检查两个相邻的三角面片是否一个面朝正面、一个朝背面。

  • 最后一种是混合方法,如首先找到精确的轮廓边,把模型和轮廓边渲染到纹理中,再使用图像处理的方法识别出轮廓线,并在图像空间中进行风格化渲染。

这里介绍过程式几何轮廓线渲染。我们在第一个Pass使用轮廓线颜色渲染整个背面的面片,并在视角空间下把模型顶点沿着法线方向向外扩张一段距离,以此让背部轮廓线可见,代码如下:

viewPos = viewPos + viewNormal * _Outline;

但如果直接使用顶点法线进行扩展,对于一些内凹的模型,就可能发生背面面片遮挡正面面片的情况。为了尽可能防止这种情况发生,在扩张背面顶点之前,我们首先对顶点法线的z分量进行处理,使它们等于一个定值,然后把法线归一化后再对顶点进行扩张,代码如下:

viewNormal.z = -0.5;
viewNormal = normalize(viewNormal);
viewPos = viewPos + viewNormal * _Outline;

添加高光

卡通渲染中,高光不需要渐变感,所以我们使用一个阈值比较,将点积结果与阈值比较,判断该区域的颜色是1还是0:

float spec = dot(worldNormal, worldHalfDir);
spec = step(threshold, spec);

当上述方法高光边缘锯齿感严重,我们可以对边缘平滑处理:

float spec = dot(worldNormal, worldHalfDir);
spec = lerp(0,1,smoothstep(-w,w,spec-threshold));

smoothstep第三个参数如果小于-w,则返回0,大于w返回1,在这之间,则在0到1之间进行插值。

实现

Shader代码如下:

Shader "Unlit/ToonShading"
{
    Properties
    {
        _Color ("Color Tint", Color) = (1,1,1,1)
        _MainTex ("Texture", 2D) = "white" {}
        _Ramp("Ramp Texture", 2D) = "white" {}
        _Outline ("Outline", Range(0,1)) = 0.1
        _OutlineColor ("Outline Color", Color) = (0,0,0,1)
        _Specular("Specular", Color) = (1,1,1,1)
        _SpecularScale ("Specular Scale", Range(0,0.1)) = 0.01
    }
    SubShader
    {
        Tags { "RenderType"="Opaque" }
        LOD 100

        Pass
        {
            NAME "OUTLINE"

            Cull Front
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            
            #include "UnityCG.cginc"

            struct appdata
            {
                float4 vertex : POSITION;
                float3 normal : NORMAL;
            };

            struct v2f
            {
                float2 uv : TEXCOORD0;
                
                float4 pos : SV_POSITION;
            };

           
            float _Outline;
            float4 _OutlineColor;

            v2f vert (appdata v)
            {
                v2f o;
                float4 pos = mul(UNITY_MATRIX_MV, v.vertex);
                float3 normal = mul((float3x3)UNITY_MATRIX_IT_MV, v.normal);
                normal.z = -0.5;
                pos = pos + float4(normalize(normal), 0) * _Outline;
                o.pos = mul(UNITY_MATRIX_P, pos);
                
                return o;
            }

            fixed4 frag(v2f i) : SV_Target
            {

                fixed4 col = _OutlineColor;
              
                return col;
            }
            ENDCG
        }

        Pass 
        {
            Tags {"LightMode" = "ForwardBase"}

            Cull Back

            CGPROGRAM

            #pragma vertex vert
            #pragma fragment frag
            #pragma multi_compile_fwdbase
            #include "UnityCG.cginc"
            #include "AutoLight.cginc"
            #include "Lighting.cginc"

            struct appdata
            {
                float4 vertex : POSITION;
                float2 uv : TEXCOORD0;
                float3 normal : NORMAL;
            };
            struct v2f
            {
                float4 pos : POSITION;
                float2 uv : TEXCOORD0;
                float3 worldNormal : TEXCOORD1;
                float3 worldPos : TEXCOORD2;
                SHADOW_COORDS(3)

            };

            sampler2D _MainTex;
            float4 _MainTex_ST;
            float4 _Color;
            sampler2D _Ramp;
            float4 _Ramp_ST;
            float4 _Specular;
            float _SpecularScale;

            v2f vert(appdata v)
            {
                v2f o;
                o.pos = UnityObjectToClipPos(v.vertex);
                o.uv = TRANSFORM_TEX(v.uv, _MainTex);
                o.worldNormal = mul(v.normal, (float3x3)unity_WorldToObject);
                o.worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;

                TRANSFER_SHADOW(o);

                return o;
            }

            float4 frag(v2f i) : SV_Target
            {
                float3 worldNormal = normalize(i.worldNormal);
                float3 worldLightDir = normalize(UnityWorldSpaceLightDir(i.worldPos));
                float3 worldViewDir = normalize(UnityWorldSpaceViewDir(i.worldPos));
                float3 worldHalfDir = normalize(worldLightDir + worldViewDir);

                float4 c = tex2D(_MainTex, i.uv);
                float3 albedo = c.rgb * _Color.rgb;

                float3 ambient = UNITY_LIGHTMODEL_AMBIENT.rgb;

                UNITY_LIGHT_ATTENUATION(atten, i, i.worldPos);

                float diff = dot(worldNormal, worldLightDir);

                diff = (diff * 0.5 + 0.5) * atten;

                float3 diffuse = _LightColor0.rgb * albedo * tex2D(_Ramp, float2(diff, diff)).rgb;

                float spec = dot(worldNormal, worldHalfDir);
                float w = fwidth(spec) * 2.0;
                float3 specular = _Specular.rgb * lerp(0, 1, smoothstep(-w, w, spec + _SpecularScale - 1)) * step(0.0001, _SpecularScale);
                return float4(ambient + diffuse + specular, 1.0);
            }
                ENDCG
        }
    }
    Fallback "Diffuse"
}

效果如下:


素描风格渲染

素描风格渲染使用了mipmaps技术,需要准备多张渐变素描纹理。Shader代码如下:

Shader "Unlit/Hatching"
{
    Properties
    {
        _Color ("Color Tint", Color) = (1,1,1,1)
        _TileFactor("Tile Factor", Float) = 1
        _Outline("Outline", Range(0,1)) = 0.1
        _Hatch0("Hatch 0", 2D) = "white" {}
        _Hatch1("Hatch 1", 2D) = "white" {}
        _Hatch2("Hatch 2", 2D) = "white" {}
        _Hatch3("Hatch 3", 2D) = "white" {}
        _Hatch4("Hatch 4", 2D) = "white" {}
        _Hatch5("Hatch 5", 2D) = "white" {}
        

    }
    SubShader
    {
        Tags { "RenderType"="Opaque" "Queue" = "Geometry"}
        LOD 100
        UsePass "Unlit/ToonShading/OUTLINE"

        Pass
        {
            Tags {"LightMode" = "ForwardBase"}
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            #pragma multi_compile_fwdbase

            #include "UnityCG.cginc"
            #include "AutoLight.cginc"
            struct appdata
            {
                float4 vertex : POSITION;
                float2 uv : TEXCOORD0;
                float3 normal : NORMAL;
            };

            struct v2f
            {
                float2 uv : TEXCOORD0;
               
                float4 pos : SV_POSITION;

                float3 hatchWeights0 : TEXCOORD1;
                float3 hatchWeights1 : TEXCOORD2;

                float3 worldPos : TEXCOORD3;
                SHADOW_COORDS(4)
            };

            float4 _Color;
            float _TileFactor;
            float _Outline;
            sampler2D _Hatch0;
            sampler2D _Hatch1;
            sampler2D _Hatch2;
            sampler2D _Hatch3;
            sampler2D _Hatch4;
            sampler2D _Hatch5;


            v2f vert (appdata v)
            {
                v2f o;
                o.pos= UnityObjectToClipPos(v.vertex);
                o.uv = v.uv * _TileFactor;
                float3 worldLightDir = normalize(WorldSpaceLightDir(v.vertex));
                float3 worldNormal = UnityObjectToWorldNormal(v.normal);
                float diff = max(0, dot(worldLightDir, worldNormal));

                o.hatchWeights0 = float3(0, 0, 0);
                o.hatchWeights1 = float3(0, 0, 0);

                float hatchFactor = diff * 7.0;

                if (hatchFactor > 6.0) {
                
                }
                else if (hatchFactor > 5.0) {
                    o.hatchWeights0.x = hatchFactor - 5.0;
                }
                else if (hatchFactor > 4.0) {
                    o.hatchWeights0.x = hatchFactor - 4.0;
                    o.hatchWeights0.y = 1 - o.hatchWeights0.x;
                }
                else if (hatchFactor > 3.0) {
                    o.hatchWeights0.y = hatchFactor - 3.0;
                    o.hatchWeights0.z = 1 - o.hatchWeights0.y;
                }
                else if (hatchFactor > 2.0) {
                    o.hatchWeights0.z = hatchFactor - 2.0;
                    o.hatchWeights1.x = 1 - o.hatchWeights0.z;
                }
                else if (hatchFactor > 1.0) {
                    o.hatchWeights1.x = hatchFactor - 1.0;
                    o.hatchWeights1.y = 1 - o.hatchWeights0.x;
                }
                else  {
                    o.hatchWeights1.y = hatchFactor;
                    o.hatchWeights1.z = 1 - o.hatchWeights0.y;
                }

                o.worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;

                TRANSFER_SHADOW(o);
                return o;
            }

            fixed4 frag(v2f i) : SV_Target
            {
                float4 hatchTex0 = tex2D(_Hatch0, i.uv) * i.hatchWeights0.x;
                float4 hatchTex1 = tex2D(_Hatch1, i.uv) * i.hatchWeights0.y;
                float4 hatchTex2 = tex2D(_Hatch2, i.uv) * i.hatchWeights0.z;
                float4 hatchTex3 = tex2D(_Hatch3, i.uv) * i.hatchWeights1.x;
                float4 hatchTex4 = tex2D(_Hatch4, i.uv) * i.hatchWeights1.y;
                float4 hatchTex5 = tex2D(_Hatch5, i.uv) * i.hatchWeights1.z;
                float4 whiteColor = float4(1, 1, 1, 1) * (1 - i.hatchWeights0.x - i.hatchWeights0.y
                    - i.hatchWeights0.z - i.hatchWeights1.x - i.hatchWeights1.y - i.hatchWeights1.z);
                float4 hatchColor = hatchTex0 + hatchTex1 + hatchTex2 + hatchTex3 + hatchTex4 + hatchTex5 + whiteColor;

                UNITY_LIGHT_ATTENUATION(atten, i, i.worldPos);

                return float4(hatchColor.rgb * _Color.rgb * atten, 1.0);

            }
            ENDCG
        }
    }
    Fallback "Diffuse"
}

效果如下:


你可能感兴趣的:(Unity Shader:非真实感渲染)