自己整理博哥爱运维0817-----k8s集成GitLab流水线---md文档

##学习来源—

第3关 二进制高可用安装k8s生产级集群*

1.每个节点安装ansible-----centos

yum install ansible -y
yum install -y git

2.node01下载安装脚本:

如果在这里面不好复杂的话,可以直接到我的github仓库里面下载这个脚本,地址:
git clone https://github.com/bogeit/LearnK8s.git

3.进入目录、执行脚本格式

sh k8s_install_new.sh Tb123456 172.24.75 149\ 155\ 152\ 154\ 150\ 151\ 148\ 153 docker calico test

4.如果遇到error,别灰心,一直执行、多执行几次下面的命令,因为在github网络超时很常见

./ezdown -D

5.下载好了在继续执行

sh k8s_install_new.sh Tb123456 172.24.75 119\ 118\ 117\ 115\ 116\ 114 docker calico test

6.安装完成后重新加载下环境变量以实现kubectl命令补齐

# 安装完成后重新加载下环境变量以实现kubectl命令补齐
. ~/.bashrc 

7.查看所有pods状态:

kubectl get pods -A

第4关 K8s最得意的小弟Docker

Dockerfile:

1.python--dockerfile格式
FROM python:3.7-slim-stretch
MAINTAINER boge 

WORKDIR /app

COPY requirements.txt .

RUN  sed -i 's/deb.debian.org/ftp.cn.debian.org/g' /etc/apt/sources.list \
  && sed -i 's/security.debian.org/ftp.cn.debian.org/g' /etc/apt/sources.list \
  && apt-get update -y \
  && apt-get install -y wget gcc libsm6 libxext6 libglib2.0-0 libxrender1 git vim \
  && apt-get clean && apt-get autoremove -y && rm -rf /var/lib/apt/lists/*
RUN pip install --no-cache-dir -i https://mirrors.aliyun.com/pypi/simple -r requirements.txt \
    && rm requirements.txt

COPY . .

EXPOSE 5000
HEALTHCHECK CMD curl --fail http://localhost:5000 || exit 1

ENTRYPOINT ["gunicorn", "app:app", "-c", "gunicorn_config.py"]
2.golang--dockerfile格式
# stage 1: build src code to binary
FROM golang:1.13-alpine3.10 as builder
MAINTAINER boge 

ENV GOPROXY https://goproxy.cn

# ENV GO111MODULE on

COPY *.go /app/

RUN cd /app && CGO_ENABLED=0 GOOS=linux GOARCH=amd64 go build -ldflags "-s -w" -o hellogo .

# stage 2: use alpine as base image
FROM alpine:3.10

RUN sed -i 's/dl-cdn.alpinelinux.org/mirrors.aliyun.com/g' /etc/apk/repositories && \
    apk update && \
    apk --no-cache add tzdata ca-certificates && \
    cp -f /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && \
    # apk del tzdata && \
    rm -rf /var/cache/apk/*


COPY --from=builder /app/hellogo /hellogo

CMD ["/hellogo"] 
3.nodejs格式
FROM node:12.6.0-alpine
MAINTAINER boge 

WORKDIR /app
COPY package.json .

RUN sed -i 's/dl-cdn.alpinelinux.org/mirrors.aliyun.com/g' /etc/apk/repositories && \
    apk update && \
    yarn  config set registry https://registry.npm.taobao.org && \
    yarn install

RUN yarn build

COPY . .

EXPOSE 6868

ENTRYPOINT ["yarn", "start"]
4.java--dockerfile格式
FROM maven:3.6.3-adoptopenjdk-8 as target

ENV MAVEN_HOME /usr/share/maven
ENV PATH $MAVEN_HOME/bin:$PATH
COPY settings.xml /usr/share/maven/conf/
WORKDIR /build
COPY pom.xml .
RUN mvn dependency:go-offline  # use docker cache
COPY src/ /build/src/
RUN mvn clean package -Dmaven.test.skip=true


FROM java:8
WORKDIR /app
RUN  rm /etc/localtime && cp /usr/share/zoneinfo/Asia/Shanghai  /etc/localtime
COPY --from=target /build/target/*.jar  /app/app.jar
EXPOSE 8080
ENTRYPOINT ["java","-Xmx768m","-Xms256m","-Djava.security.egd=file:/dev/./urandom","-jar","/app/app.jar"]
5.docker的整个生命周期展示
docker login "仓库地址" -u "仓库用户名" -p "仓库密码"
docker pull "仓库地址"/"仓库命名空间"/"镜像名称":latest || true
docker build --network host --build-arg PYPI_IP="xx.xx.xx.xx" --cache-from "仓库地址"/"仓库命名空间"/"镜像名称":latest --tag "仓库地址"/"仓库命名空间"/"镜像名称":"镜像版本号" --tag "仓库地址"/"仓库命名空间"/"镜像名称":latest .
docker push "仓库地址"/"仓库命名空间"/"镜像名称":"镜像版本号"
docker push "仓库地址"/"仓库命名空间"/"镜像名称":latest

# 基于redis的镜像运行一个docker实例
docker run --name myredis --net host -d redis:6.0.2-alpine3.11 redis-server --requirepass boGe666
6.dockerfile实战
我这里将上面的flask和golang项目上传到了网盘,地址如下
https://cloud.189.cn/t/M36fYrIrEbui (访问码:hy47)

# 解压
unzip docker-file.zip

# 先打包python项目的镜像并运行测试
cd python
docker build -t python/flask:v0.0.1 .
docker run -d -p 80:5000 python/flask:v0.0.1

# 再打包golang项目的镜像并运行测试
docker build -t boge/golang:v0.0.1 .
docker run -d -p80:3000 boge/golang:v0.0.1

第5关 K8s攻克作战攻略之一

善用-h命令!!!

第3关我们以二进制的形式部署好了一套K8S集群,现在我们就来会会K8S吧

1.生产中的小技巧:k8s删除namespaces状态一直为terminating问题处理、执行下面脚本
2.执行格式bash 1.sh kubevirt(namespace名字)
#!/bin/bash
set -eo pipefail
die() { echo "$*" 1>&2 ; exit 1; }
need() {
        which "$1" &>/dev/null || die "Binary '$1' is missing but required"
}
# checking pre-reqs
need "jq"
need "curl"
need "kubectl"
PROJECT="$1"
shift
test -n "$PROJECT" || die "Missing arguments: kill-ns "
kubectl proxy &>/dev/null &
PROXY_PID=$!
killproxy () {
        kill $PROXY_PID
}
trap killproxy EXIT
sleep 1 # give the proxy a second
kubectl get namespace "$PROJECT" -o json | jq 'del(.spec.finalizers[] | select("kubernetes"))' | curl -s -k -H "Content-Type: application/json" -X PUT -o /dev/null --data-binary @- http://localhost:8001/api/v1/namespaces/$PROJECT/finalize && echo "Killed namespace: $PROJECT"

Pod

1.擅用-h 帮助参数
kubectl run -h

kubectl  get pod -w -o wide  查看pod详细信息
2.进入容器内部
kubectl -it exec nginx -- sh
3.查看pod详细信息、可以用来排错
kubectl  describe pod nginx
4.查看可用镜像版本:生产小技巧
来源cat /opt/kube/bin/docker-tag
先source加载一下,docker+双按tab+tab
source ~/.bashrc
用法:docker-tag tags nginx

第5关 K8s攻克作战攻略之二-Deployment

Deployment扩容以及回滚

善用-h

1.善用-h
kubectl create deployment -h
kubectl create deployment nginx --image=nginx

2.查看创建结果:
kubectl  get deployments.apps 

3.看下自动关联创建的副本集replicaset---    kubectl  get rs 
4.扩容pod的数量、善用-h
kubectl scale -h
kubectl scale deployment nginx --replicas=2

5.查看pod在哪里运行、pod状态等
kubectl get pod -o wide

6.善用--record、对版本回滚很重要!
kubectl set image deployment/nginx  nginx=nginx:1.9.9 --record 
# 升级nginx的版本
#  kubectl set image deployments/nginx nginx=nginx:1.19.5 --record 

7.查看历史版本、回归依据
# kubectl rollout history deployment nginx 
deployment.apps/nginx 
REVISION  CHANGE-CAUSE
1         
2         kubectl set image deployments/nginx nginx=nginx:1.9.9 --record=true
3         kubectl set image deployments/nginx nginx=nginx:1.19.5 --record=true

8.回滚到特定版本
kubectl rollout undo deployment nginx --to-revision=2
查看版本历史
kubectl rollout history deployment nginx
补充
1.禁止pod调度到该节点上
kubectl cordon
2.驱逐该节点上的所有pod
kubectl drain
生成yaml文件的方法:
kubectl create deployment nginx --image=nginx --dry-run -o yaml > nginx.yaml    

第5关 K8s攻克作战攻略之三-服务pod的健康检测

大家好,我是博哥爱运维,这节课内容给大家讲解下在K8S上,我们如果对我们的业务服务进行健康检测。

Liveness

#继续接受文件尝试重新创建---外部访问可能回404
#例子:
apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness
spec:
  restartPolicy: OnFailure
  containers:
  - name: liveness
    image: busybox
    args:
    - /bin/sh
    - -c
    - touch /tmp/healthy; sleep 30; rm -f /tmp/healthy; sleep 600
    livenessProbe:
    #readinessProbe:    # 这里将livenessProbe换成readinessProbe即可,其它配置都一样
      exec:
        command:
        - cat
        - /tmp/healthy
      initialDelaySeconds: 10   # 容器启动 10 秒之后开始检测
      periodSeconds: 5          # 每隔 5 秒再检测一次

Readiness

一般用这个探针比较多,**Readiness**将容器设置为不可用
配置和上面一样见上面注释:在containers:后面加存活探针readinessProbe:
**Readiness**的特点不在接受服务,不在导入流量到pod内
两者可以同时使用:可以单独使用,也可以同时使用
接下来我们详细分析下滚动更新的原理,为什么上面服务新版本创建的pod数量是7个,同时只销毁了3个旧版本的pod呢?
我们不显式配置这段的话,默认值均是25%
  strategy:
    rollingUpdate:
      maxSurge: 35%
      maxUnavailable: 35%
#按正常的生产处理流程,在获取足够的新版本错误信息提交给开发分析后,我们可以通过kubectl rollout undo 来回滚到上一个正常的服务版本:
#查看历史版本:
kubectl rollout history deployment mytest 
#回滚到特定版本
kubectl rollout undo deployment mytest --to-revision=1

第5关 k8s架构师课程攻克作战攻略之四-Service

这节课内容给大家讲解下在K8S上如何来使用service做内部服务pod的流量负载均衡。

pod的IP每次重启都会发生改变,所以我们不应该期望K8s的pod是健壮的

并且流量入口这块用一个能固定IP的service来充当抽象的内部负载均衡器,提供pod的访问

1.创建一个svc来暴露deploy---nginx端口,会生成svc
kubectl expose deployment nginx --port=80 --target-port=80 --dry-run=client -o yaml
2.查看svc
kubectl get svc
看下自动关联生成的endpoint
kubectl  get endpoints nginx
3.测试下svc的负载均衡效果
分别进入几个容器内部修改nginx主页文件---如果没有多个nginx自己扩容下deploy善用-h指令
# kubectl  exec -it nginx-6799fc88d8-2kgn8 -- bash
root@nginx-f89759699-bzwd2:/# echo nginx-6799fc88d8-2kgn8 > /usr/share/nginx/html/index.html
4.测试svc的负载均衡效果
查看SVC
kubectl get svc
访问svc发现每次返回都不一样,达到负载均衡
curl 10.68.121.237
5.提供外网访问,外部访问:
kubectl patch svc nginx -p '{"spec":{"type":"NodePort"}}'
查看NodePort端口
kubectl get svc
尝试访问访问
nginx     NodePort    10.68.121.237   <none>        80:32012/TCP   12m    app=nginx
查看看下kube-proxy的配置
cat /etc/systemd/system/kube-proxy.service
cat /var/lib/kube-proxy/kube-proxy-config.yaml
查看ipvs的虚拟网卡:ip addr |grep ipv
查看lvs都武器列表:ipvsadm -ln 可以看见ipvs的轮询策略

[Service]
WorkingDirectory=/var/lib/kube-proxy
ExecStart=/opt/kube/bin/kube-proxy \
  --bind-address=10.0.1.202 \
  --cluster-cidr=172.20.0.0/16 \
  --hostname-override=10.0.1.202 \
  --kubeconfig=/etc/kubernetes/kube-proxy.kubeconfig \
  --logtostderr=true \
  --proxy-mode=ipvs 
还可以用K8s的DNS来访问、除了直接用cluster ip,以及上面说到的NodePort模式来访问Service,我们还可以用K8s的DNS来访问
我们前面装好的CoreDNS,来提供K8s集群的内部DNS访问
查看一下coreDNS
kubectl -n kube-system get deployment,pod|grep dns

serviceName.namespaceName
coredns是一个DNS服务器,每当有新的Service被创建的时候,coredns就会添加该Service的DNS记录,然后我们通过serviceName.namespaceName就可以来访问到对应的pod了,下面来演示下:
它可以从容器内部ping外部的svc
[root@node01 LearnK8s]# kubectl run -it --rm busybox --image=busybox -- sh
If you don't see a command prompt, try pressing enter.
/ # ping nginx.default
##default可以省略
PING nginx.default (10.68.121.237): 56 data bytes
64 bytes from 10.68.121.237: seq=0 ttl=64 time=0.041 ms
64 bytes from 10.68.121.237: seq=1 ttl=64 time=0.074 ms

service生产小技巧 通过svc来访问非K8s上的服务

创建service后,会自动创建对应的endpoint\\\也可以手动创建endpoint
在生产中,我们可以通过创建不带selector的Service,然后创建同样名称的endpoint,来关联K8s集群以外的服务
我们可以直接复用K8s上的ingress(这个后面会讲到,现在我们就当它是一个nginx代理),来访问K8s集群以外的服务,省去了自己搭建前面Nginx代理服务器的麻烦

开始实践测试
这里我们挑选node-2节点,用python运行一个简易web服务器
[root@node-2 mnt]# python -m SimpleHTTPServer 9999
Serving HTTP on 0.0.0.0 port 9999 ...

在node01上配置svc和endpoints
注意Service和Endpoints的名称必须一致

# 注意我这里把两个资源的yaml写在一个文件内,在实际生产中,我们经常会这么做,方便对一个服务的所有资源进行统一管理,不同资源之间用"---"来分隔
apiVersion: v1
kind: Service
metadata:
  name: mysvc
  namespace: default
spec:
  type: ClusterIP
  ports:
  - port: 80
    protocol: TCP

---

apiVersion: v1
kind: Endpoints
metadata:
  name: mysvc
  namespace: default
subsets:
- addresses:
#启动测试服务的节点,我这里是node2
  - ip: 172.24.75.118
    nodeName: 172.24.75.118
  ports:
  - port: 9999
    protocol: TCP
开始创建并测试:
# kubectl  apply -f mysvc.yaml 
service/mysvc created
endpoints/mysvc created

# kubectl get svc,endpoints |grep mysvc
service/mysvc        ClusterIP   10.68.71.166   <none>        80/TCP         14s
endpoints/mysvc        10.0.1.202:9999                     14s

# curl 10.68.71.166
mysvc

# 我们回到node-2节点上,可以看到有一条刚才的访问日志打印出来了
10.0.1.201 - - [25/Nov/2020 14:42:45] "GET / HTTP/1.1" 200 -
#也可以修改yaml文件外网访问加端口查看结果

查看nodeport端口范围
cat /etc/systemd/system/kube-apiserver.service|grep service
#--service-node-port-range=30000-32767 \
service生产调优:
kubectl patch svc nginx -p '{"spec":{"externalTrafficPolicy":"Local"}}'
service/nginx patched
现在通过非pod所在node节点的IP来访问是不通了
通过所在node的IP发起请求正常
可以看到日志显示的来源IP就是201,这才是我们想要的结果
# 去掉这个优化配置也很简单
# kubectl patch svc nginx -p '{"spec":{"externalTrafficPolicy":""}}' 

第6关 k8s架构师课程之流量入口Ingress上部

大家好,这节课带来k8s的流量入口ingres\本课程带给大家的都是基于生产中实战经验,所以这里我们用的ingress-nginx不是普通的社区版本,而是经过了超大生产流量检验,国内最大的云平台阿里云基于社区版分支出来,进行了魔改而成,更符合生产,基本属于开箱即用,下面是aliyun-ingress-controller的介绍:

下面介绍只截取了最新的一部分,更多文档资源可以查阅官档:
https://developer.aliyun.com/article/598075

如果不支持配置动态更新,对于在高频率变化的场景下,Nginx频繁Reload会带来较明显的请求访问问题:

  1. 造成一定的QPS抖动和访问失败情况
  2. 对于长连接服务会被频繁断掉
  3. 造成大量的处于shutting down的Nginx Worker进程,进而引起内存膨胀
  4. 详细原理分析见这篇文章: https://developer.aliyun.com/article/692732

生产中在用的yaml配置:

aliyun-ingress-nginx.yaml
kubectl  apply -f aliyun-ingress-nginx.yaml 
#配置见下一个文件
我们查看下pod,会发现空空如也,为什么会这样呢?
kubectl -n ingress-nginx get pod
kind: DaemonSet
注意yaml配置里面DaemonSet的配置,我使用了节点选择配置,只有打了我指定lable标签的node节点,也会被允许调度pod上去运行、需要的标签是  boge/ingress-controller-ready=true

打标签的方法: 在哪个节点打标签、就会在哪个节点运行ds(Daemonset)、
Daemonset的特点是在每个Node上只能运行一个:
kubectl label node 172.24.75.119 boge/ingress-controller-ready=true
kubectl label node 172.24.75.118 boge/ingress-controller-ready=true
...你可以把每个node都打上标签、不想用标签你可以注释掉自己的nodeSelctor
打完标签、接着可以看到pod就被调到这两台node上启动了

尝试注释掉aliyun-ingress-nginx.yaml的节点选择、会发现每个节点就会自动生成一个ds、
      #nodeSelector:
      #  boge/ingress-controller-ready: "true"
 查看ds     
 kubectl get ds -n ingress-nginx
如果是自建机房,我们通常会在至少2台node节点上运行有ingress-nginx的pod\\\
也就是说会生成多个nginx-ingress-controller
不妨注释掉nodeSelector:
让每个节点自动生成nginx-ingress-controller
kubectl get ds -n ingress-nginx
nginx-ingress-controller 6
#我们准备来部署aliyun-ingress-controller,下面直接是生产中在用的yaml配置,我们保存了aliyun-ingress-nginx.yaml准备开始部署:详细讲解下面yaml配置的每个部分
apiVersion: v1
kind: Namespace
metadata:
  name: ingress-nginx
  labels:
    app: ingress-nginx

---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: nginx-ingress-controller
  namespace: ingress-nginx
  labels:
    app: ingress-nginx

---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
  name: nginx-ingress-controller
  labels:
    app: ingress-nginx
rules:
  - apiGroups:
      - ""
    resources:
      - configmaps
      - endpoints
      - nodes
      - pods
      - secrets
      - namespaces
      - services
    verbs:
      - get
      - list
      - watch
  - apiGroups:
      - "extensions"
      - "networking.k8s.io"
    resources:
      - ingresses
    verbs:
      - get
      - list
      - watch
  - apiGroups:
      - ""
    resources:
      - events
    verbs:
      - create
      - patch
  - apiGroups:
      - "extensions"
      - "networking.k8s.io"
    resources:
      - ingresses/status
    verbs:
      - update
  - apiGroups:
      - ""
    resources:
      - configmaps
    verbs:
      - create
  - apiGroups:
      - ""
    resources:
      - configmaps
    resourceNames:
      - "ingress-controller-leader-nginx"
    verbs:
      - get
      - update

---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
  name: nginx-ingress-controller
  labels:
    app: ingress-nginx
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: nginx-ingress-controller
subjects:
  - kind: ServiceAccount
    name: nginx-ingress-controller
    namespace: ingress-nginx

---
apiVersion: v1
kind: Service
metadata:
  labels:
    app: ingress-nginx
  name: nginx-ingress-lb
  namespace: ingress-nginx
spec:
  # DaemonSet need:
  # ----------------
  type: ClusterIP
  # ----------------
  # Deployment need:
  # ----------------
#  type: NodePort
  # ----------------
  ports:
  - name: http
    port: 80
    targetPort: 80
    protocol: TCP
  - name: https
    port: 443
    targetPort: 443
    protocol: TCP
  - name: metrics
    port: 10254
    protocol: TCP
    targetPort: 10254
  selector:
    app: ingress-nginx

---
kind: ConfigMap
apiVersion: v1
metadata:
  name: nginx-configuration
  namespace: ingress-nginx
  labels:
    app: ingress-nginx
data:
  keep-alive: "75"
  keep-alive-requests: "100"
  upstream-keepalive-connections: "10000"
  upstream-keepalive-requests: "100"
  upstream-keepalive-timeout: "60"
  allow-backend-server-header: "true"
  enable-underscores-in-headers: "true"
  generate-request-id: "true"
  http-redirect-code: "301"
  ignore-invalid-headers: "true"
  log-format-upstream: '{"@timestamp": "$time_iso8601","remote_addr": "$remote_addr","x-forward-for": "$proxy_add_x_forwarded_for","request_id": "$req_id","remote_user": "$remote_user","bytes_sent": $bytes_sent,"request_time": $request_time,"status": $status,"vhost": "$host","request_proto": "$server_protocol","path": "$uri","request_query": "$args","request_length": $request_length,"duration": $request_time,"method": "$request_method","http_referrer": "$http_referer","http_user_agent":  "$http_user_agent","upstream-sever":"$proxy_upstream_name","proxy_alternative_upstream_name":"$proxy_alternative_upstream_name","upstream_addr":"$upstream_addr","upstream_response_length":$upstream_response_length,"upstream_response_time":$upstream_response_time,"upstream_status":$upstream_status}'
  max-worker-connections: "65536"
  worker-processes: "2"
  proxy-body-size: 20m
  proxy-connect-timeout: "10"
  proxy_next_upstream: error timeout http_502
  reuse-port: "true"
  server-tokens: "false"
  ssl-ciphers: ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-AES256-SHA:DHE-RSA-AES256-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:AES:CAMELLIA:DES-CBC3-SHA:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!PSK:!aECDH:!EDH-DSS-DES-CBC3-SHA:!EDH-RSA-DES-CBC3-SHA:!KRB5-DES-CBC3-SHA
  ssl-protocols: TLSv1 TLSv1.1 TLSv1.2
  ssl-redirect: "false"
  worker-cpu-affinity: auto

---
kind: ConfigMap
apiVersion: v1
metadata:
  name: tcp-services
  namespace: ingress-nginx
  labels:
    app: ingress-nginx

---
kind: ConfigMap
apiVersion: v1
metadata:
  name: udp-services
  namespace: ingress-nginx
  labels:
    app: ingress-nginx

---
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: nginx-ingress-controller
  namespace: ingress-nginx
  labels:
    app: ingress-nginx
  annotations:
    component.version: "v0.30.0"
    component.revision: "v1"
spec:
  # Deployment need:
  # ----------------
#  replicas: 1
  # ----------------
  selector:
    matchLabels:
      app: ingress-nginx
  template:
    metadata:
      labels:
        app: ingress-nginx
      annotations:
        prometheus.io/port: "10254"
        prometheus.io/scrape: "true"
        scheduler.alpha.kubernetes.io/critical-pod: ""
    spec:
      # DaemonSet need:
      # ----------------
      hostNetwork: true
      # ----------------
      serviceAccountName: nginx-ingress-controller
      priorityClassName: system-node-critical
      affinity:
        podAntiAffinity:
          preferredDuringSchedulingIgnoredDuringExecution:
          - podAffinityTerm:
              labelSelector:
                matchExpressions:
                - key: app
                  operator: In
                  values:
                  - ingress-nginx
              topologyKey: kubernetes.io/hostname
            weight: 100
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
            - matchExpressions:
              - key: type
                operator: NotIn
                values:
                - virtual-kubelet
      containers:
        - name: nginx-ingress-controller
          image: registry.cn-beijing.aliyuncs.com/acs/aliyun-ingress-controller:v0.30.0.2-9597b3685-aliyun
          args:
            - /nginx-ingress-controller
            - --configmap=$(POD_NAMESPACE)/nginx-configuration
            - --tcp-services-configmap=$(POD_NAMESPACE)/tcp-services
            - --udp-services-configmap=$(POD_NAMESPACE)/udp-services
            - --publish-service=$(POD_NAMESPACE)/nginx-ingress-lb
            - --annotations-prefix=nginx.ingress.kubernetes.io
            - --enable-dynamic-certificates=true
            - --v=2
          securityContext:
            allowPrivilegeEscalation: true
            capabilities:
              drop:
                - ALL
              add:
                - NET_BIND_SERVICE
            runAsUser: 101
          env:
            - name: POD_NAME
              valueFrom:
                fieldRef:
                  fieldPath: metadata.name
            - name: POD_NAMESPACE
              valueFrom:
                fieldRef:
                  fieldPath: metadata.namespace
          ports:
            - name: http
              containerPort: 80
            - name: https
              containerPort: 443
          livenessProbe:
            failureThreshold: 3
            httpGet:
              path: /healthz
              port: 10254
              scheme: HTTP
            initialDelaySeconds: 10
            periodSeconds: 10
            successThreshold: 1
            timeoutSeconds: 10
          readinessProbe:
            failureThreshold: 3
            httpGet:
              path: /healthz
              port: 10254
              scheme: HTTP
            periodSeconds: 10
            successThreshold: 1
            timeoutSeconds: 10
#          resources:
#            limits:
#              cpu: "1"
#              memory: 2Gi
#            requests:
#              cpu: "1"
#              memory: 2Gi
          volumeMounts:
          - mountPath: /etc/localtime
            name: localtime
            readOnly: true
      volumes:
      - name: localtime
        hostPath:
          path: /etc/localtime
          type: File
      nodeSelector:
        boge/ingress-controller-ready: "true"
      tolerations:
      - operator: Exists

      initContainers:
      - command:
        - /bin/sh
        - -c
        - |
          mount -o remount rw /proc/sys
          sysctl -w net.core.somaxconn=65535
          sysctl -w net.ipv4.ip_local_port_range="1024 65535"
          sysctl -w fs.file-max=1048576
          sysctl -w fs.inotify.max_user_instances=16384
          sysctl -w fs.inotify.max_user_watches=524288
          sysctl -w fs.inotify.max_queued_events=16384
        image: registry.cn-beijing.aliyuncs.com/acs/busybox:v1.29.2
        imagePullPolicy: Always
        name: init-sysctl
        securityContext:
          privileged: true
          procMount: Default

---
## Deployment need for aliyun'k8s:
#apiVersion: v1
#kind: Service
#metadata:
#  annotations:
#    service.beta.kubernetes.io/alibaba-cloud-loadbalancer-id: "lb-xxxxxxxxxxxxxxxxxxx"
#    service.beta.kubernetes.io/alibaba-cloud-loadbalancer-force-override-listeners: "true"
#  labels:
#    app: nginx-ingress-lb
#  name: nginx-ingress-lb-local
#  namespace: ingress-nginx
#spec:
#  externalTrafficPolicy: Local
#  ports:
#  - name: http
#    port: 80
#    protocol: TCP
#    targetPort: 80
#  - name: https
#    port: 443
#    protocol: TCP
#    targetPort: 443
#  selector:
#    app: ingress-nginx
#  type: LoadBalancer
 先部署aliyun-ingress-controller才能部署下面的一对测试
 
 我们基于前面学到的deployment和service,来创建一个nginx的相应服务资源,保存为nginx.yaml:
 注意:记得把前面测试的资源删除掉,以防冲突
 生成文件后执行kubectl apply -f nginx.yaml文件内容如下:
apiVersion: v1
kind: Service
metadata:
  labels:
    app: nginx
  name: nginx
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    app: nginx

---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: nginx
  name: nginx
spec:
  replicas: 1
  selector:
    matchLabels:
      app: nginx  # Deployment 如何跟 Service 关联的????
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - image: nginx
        name: nginx
然后准备nginx的ingress配置,保留为nginx-ingress.yaml,并执行它:
kubectl apply -f nginx-ingress.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: nginx-ingress
spec:
  rules:
    - host: nginx.boge.com
      http:
        paths:
          - backend:
              serviceName: nginx   # 与service做关联????
              servicePort: 80
            path: /
我们在其它节点上,加下本地hosts,来测试下效果
echo "172.24.75.119 nginx.boge.com" >> /etc/hosts
可以多在几个节点上添加尝试通过ingress访问
curl nginx.boge.com
回到主节点上,看下ingress-nginx的日志、这里要注意你pod运行的node来找pod
kubectl get pods -n ingress-nginx -o wide
多节点通过curl访问以后、可以看到访问日志
kubectl -n ingress-nginx logs --tail=2 nginx-ingress-controller-5lntz -o wide
如果是自建机房,我们通常会在至少2台node节点上运行有ingress-nginx的pod\
一般两台也够了
那么有必要在这两台node上面部署负载均衡软件做调度,来起到高可用的作用,这里我们用haproxy+keepalived,如果你的生产环境是在云上,假设是阿里云,那么你只需要购买一个负载均衡器SLB\
将运行有ingress-nginx的pod的节点服务器加到这个SLB的后端来,然后将请求域名和这个SLB的公网IP做好解析即可,
注意在每台node节点上有已经部署有了个haproxy软件,来转发apiserver的请求的,那么,我们只需要选取两台节点,部署keepalived软件并重新配置haproxy,来生成**VIP**达到ha的效果,这里我们选择在其中两台node节点(172.24.75.118、117)上部署
查看node上现在已有的haproxy配置:
这个配置在worker节点node3\4\5才有。在master是没有的
cat /etc/haproxy/haproxy.cfg
开始新增ingress端口的转发,修改haproxy配置如下(注意两台节点都记得修改):
vim /etc/haproxy/haproxy.cfg
在最后加

listen ingress-http
        bind 0.0.0.0:80
        mode tcp
        option tcplog
        option dontlognull
        option dontlog-normal
        balance roundrobin
        server 172.24.75.117 172.24.75.117:80 check inter 2000 fall 2 rise 2 weight 1
        server 172.24.75.118 172.24.75.118:80 check inter 2000 fall 2 rise 2 weight 1
        server 172.24.75.119 172.24.75.119:80 check inter 2000 fall 2 rise 2 weight 1

listen ingress-https
        bind 0.0.0.0:443
        mode tcp
        option tcplog
        option dontlognull
        option dontlog-normal
        balance roundrobin
        server 172.24.75.117 172.24.75.117:443 check inter 2000 fall 2 rise 2 weight 1
        server 172.24.75.118 172.24.75.118:443 check inter 2000 fall 2 rise 2 weight 1
        server 172.24.75.119 172.24.75.119:443 check inter 2000 fall 2 rise 2 weight 1
 
配置完后重启服务
systemctl restart haproxy.service 
然后在两台node上分别安装keepalived并进行配置:
yum install -y keepalived

ip r  查看网卡接口  可能是eth0也可能是ens32,是哪个就写哪个
生成vip漂移

修改keepalived配置文件
vi /etc/keepalived/keepalived.conf

全部删除、在重新加上下面的、注意修改***eth0或者ens32***   ip r 查看网卡
注意改成自己的node  IP
三个node的keepalive都要改、IP记得轮流换、在哪个机上unicast_src_ip就写哪个机的内网、交换
所以下面的配置三个机上都要换unicast_src_ip和unicast_peer
配置完成后重启keepalive
systemctl restart haproxy.service
systemctl restart keepalived.service
 
配置完成后查看VIP正在哪个node上:
ip a |grep 222
看到这次VIP 222在node04上
换一个node节点(worker)测试
将VIP和域名写入hosts
echo "172.24.75.222  nginx.boge.com" >> /etc/hosts

global_defs {
    router_id lb-master
}

vrrp_script check-haproxy {
    script "killall -0 haproxy"
    interval 5
    weight -60
}

vrrp_instance VI-kube-master {
    state MASTER
    priority 120
    unicast_src_ip 172.24.75.115
    unicast_peer {
        172.24.75.116
        172.24.75.114
    }
    dont_track_primary
    interface eth0  # 注意这里的网卡名称修改成你机器真实的内网网卡名称,可用命令ip addr查看
    virtual_router_id 111
    advert_int 3
    track_script {
        check-haproxy
    }
    virtual_ipaddress {
        172.24.75.222
    }
}
因为http属于是明文传输数据不安全,在生产中我们通常会配置https加密通信,现在实战下Ingress的tls配置
# 这里我先自签一个https的证书
#1. 先生成私钥key
openssl genrsa -out tls.key 2048

#2.再基于key生成tls证书(注意:这里我用的*.boge.com,这是生成泛域名的证书,后面所有新增加的三级域名都是可以用这个证书的)
openssl req -new -x509 -key tls.key -out tls.cert -days 360 -subj /CN=*.boge.com

# 在K8s上创建tls的secret(注意默认ns是default)
kubectl create secret tls mytls --cert=tls.cert --key=tls.key

# 然后修改先的ingress的yaml配置
# cat nginx-ingress.yaml 
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /    # 注意这里需要把进来到服务的请求重定向到/,这个和传统的nginx配置是一样的,不配会404
  name: nginx-ingress
spec:
  rules:
    - host: nginx.boge.com
      http:
        paths:
          - backend:
              serviceName: nginx
              servicePort: 80
            path: /nginx  # 注意这里的路由名称要是唯一的
          - backend:       # 从这里开始是新增加的
              serviceName: web
              servicePort: 80
            path: /web  # 注意这里的路由名称要是唯一的
  tls:    # 增加下面这段,注意缩进格式
      - hosts:
          - nginx.boge.com   # 这里域名和上面的对应
        secretName: mytls    # 这是我先生成的secret

# 进行更新
# kubectl  apply -f nginx-ingress.yaml  

第7关 k8s架构师课程之HPA 自动水平伸缩pod

HPA

我们在生产中通常用得最多的就是基于服务pod的cpu使用率metrics来自动扩容pod数量,下面来以生产的标准来实战测试下(注意:使用HPA前我们要确保K8s集群的dns服务和metrics服务是正常运行的,并且我们所创建的服务需要配置指标分配)

# pod内资源分配的配置格式如下:
# 默认可以只配置requests,但根据生产中的经验,建议把limits资源限制也加上,因为对K8s来说,只有这两个都配置了且配置的值都要一样,这个pod资源的优先级才是最高的,在node资源不够的情况下,首先是把没有任何资源分配配置的pod资源给干掉,其次是只配置了requests的,最后才是两个都配置的情况,仔细品品
      resources:
        limits:   # 限制单个pod最多能使用1核(1000m 毫核)cpu以及2G内存
          cpu: "1"
          memory: 2Gi
        requests: # 保证这个pod初始就能分配这么多资源
          cpu: "1"
          memory: 2Gi
我们先不做上面配置的改动,看看直接创建hpa会产生什么情况:
为deployment资源web创建hpa,pod数量上限3个,最低1个,在pod平均CPU达到50%后开始扩容
kubectl  autoscale deployment web --max=3 --min=1 --cpu-percent=50
编辑配置vi web.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: web
  name: web
  namespace: default
spec:
  replicas: 1
  selector:
    matchLabels:
      app: web
  template:
    metadata:
      labels:
        app: web
    spec:
      containers:
      - image: nginx
        name: nginx
        resources:
          limits:   # 因为我这里是测试环境,所以这里CPU只分配50毫核(0.05核CPU)和20M的内存
            cpu: "50m"
            memory: 20Mi
          requests: # 保证这个pod初始就能分配这么多资源
            cpu: "50m"
            memory: 20Mi
自动扩容
kubectl  autoscale deployment web --max=3 --min=1 --cpu-percent=50
# 等待一会,可以看到相关的hpa信息(K8s上metrics服务收集所有pod资源的时间间隔大概在60s的时间)
# kubectl get hpa -w

# 我们启动一个临时pod,来模拟大量请求
# kubectl run -it --rm busybox --image=busybox -- sh
/ # while :;do wget -q -O- http://web;done


# kubectl get hpa -w
看到自动扩容了

第8关 k8s架构师课程之持久化存储第一节

大家好,我是博哥爱运维,K8s是如何来管理存储资源的呢?跟着博哥来会会它们吧!

Volume

emptyDir

我们先开始讲讲emptyDir,生产中它的最实际实用是提供Pod内多容器的volume数据共享

emptyDir的使用示例

# 我们继续用上面的web服务的配置,在里面新增volume配置
# cat web.yaml
kubectl apply -f web.yaml 
kubectl get svc
# 可以看到每次访问都是被写入当前最新时间的页面内容
[root@node-1 ~]# curl 10.68.229.231

# cat web.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: web
  name: web
  namespace: default
spec:
  replicas: 1
  selector:
    matchLabels:
      app: web
  template:
    metadata:
      labels:
        app: web
    spec:
      containers:
      - image: nginx
        name: nginx
        resources:
          limits:
            cpu: "50m"
            memory: 20Mi
          requests:
            cpu: "50m"
            memory: 20Mi
        volumeMounts:         # 准备将pod的目录进行卷挂载
          - name: html-files  # 自定个名称,容器内可以类似这样挂载多个卷
            mountPath: "/usr/share/nginx/html"

      - name: busybox       # 在pod内再跑一个容器,每秒把当时时间写到nginx默认页面上
        image: busybox
        args:
        - /bin/sh
        - -c
        - >
           while :; do
             if [ -f /html/index.html ];then
               echo "[$(date +%F\ %T)] hello" > /html/index.html
               sleep 1
             else
               touch /html/index.html
             fi
           done
        volumeMounts:
          - name: html-files  # 注意这里的名称和上面nginx容器保持一样,这样才能相互进行访问
            mountPath: "/html"  # 将数据挂载到当前这个容器的这个目录下
      volumes:
        - name: html-files   # 最后定义这个卷的名称也保持和上面一样
          emptyDir:          # 这就是使用emptyDir卷类型了
            medium: Memory   # 这里将文件写入内存中保存,这样速度会很快,配置为medium: "" 就是代表默认的使用本地磁盘空间来进行存储
            sizeLimit: 10Mi  # 因为内存比较珍贵,注意限制使用大小

第8关 k8s架构师课程之持久化存储第二节PV和PVC

大家好,我是博哥爱运维\\有了pvc,我们在K8s进行卷挂载就只需要考虑要多少容量了,而不用关心真正的空间是用什么存储系统做的等一些底层细节信息,pv这些只有存储管理员才应用去关心它。

K8s支持多种类型的pv,我们这里就以生产中常用的NFS来作演示(在云上的话就用NAS),生产中如果对存储要求不是太高的话,建议就用NFS,这样出问题也比较容易解决,如果有性能需求,可以看看rook的ceph,以及Rancher的Longhorn,

开始部署NFS-SERVER

# 我们这里在10.0.1.201上安装(在生产中,大家要提供作好NFS-SERVER环境的规划)
yum -y install nfs-utils

# 创建NFS挂载目录
 mkdir /nfs_dir
 chown nobody.nobody /nfs_dir

# 修改NFS-SERVER配置
 echo '/nfs_dir *(rw,sync,no_root_squash)' > /etc/exports

# 重启服务
 systemctl restart rpcbind.service
 systemctl restart nfs-utils.service 
 systemctl restart nfs-server.service 

# 增加NFS-SERVER开机自启动
 systemctl enable nfs-server.service 
Created symlink from /etc/systemd/system/multi-user.target.wants/nfs-server.service to /usr/lib/systemd/system/nfs-server.service.

# 验证NFS-SERVER是否能正常访问
showmount -e 10.0.1.201                 
Export list for 10.0.1.201:
/nfs_dir *


创建基于NFS的PV
首先在NFS-SERVER的挂载目录里面创建一个目录
mkdir /nfs_dir/pv1

接着准备好pv的yaml配置,保存为pv1.yaml
cat pv1.yaml
查看pv状态
kubectl get pv

apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv1
  labels:
    type: test-claim    # 这里建议打上一个独有的标签,方便在多个pv的时候方便提供pvc选择挂载
spec:
  capacity:
    storage: 1Gi     # <----------  1
  accessModes:
    - ReadWriteOnce     # <----------  2
  persistentVolumeReclaimPolicy: Recycle     # <----------  3
  storageClassName: nfs     # <----------  4
  nfs:
    path: /nfs_dir/pv1     # <----------  5
    server: 10.0.1.201
接着准备PVC的yaml,保存为pvc1.yaml
# cat pvc1.yaml 
kubectl apply -f pvc1.yaml 
查看pvc状态、已经bound
kubectl get pvc

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: pvc1
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi
  storageClassName: nfs
  selector:
    matchLabels:
      type: test-claim
下面我们准备pod服务来挂载这个pvc
这里就以上面最开始演示用的nginx的deployment的yaml配置来作修改
cat nginx.yaml 
kubectl apply -f nginx.yaml
kubectl get pod
kubectl get svc
curl nginxip
卷挂载后会把当前已经存在这个目录的文件给覆盖掉,这个和传统机器上的磁盘目录挂载道理是一样的
# 我们来自己创建一个index.html页面
# echo 'hello, world!' > /nfs_dir/pv1/index.html
# 再请求下看看,已经正常了
# curl 10.68.238.54
# 我们来手动删除这个nginx的pod,看下容器内的修改是否是持久的呢?
# kubectl delete pod nginx-569546db98-4nmmg 
# 等待一会,等新的pod被创建好
# 再测试一下,可以看到,容器内的修改现在已经被持久化了
# 后面我们再想修改有两种方式,一个是exec进到pod内进行修改,还有一个是直接修改挂载在NFS目录下的文件
# echo 111 > /nfs_dir/pv1/index.html


apiVersion: v1
kind: Service
metadata:
  labels:
    app: nginx
  name: nginx
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    app: nginx

---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: nginx
  name: nginx
spec:
  replicas: 1
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - image: nginx
        name: nginx
        volumeMounts:    # 我们这里将nginx容器默认的页面目录挂载
          - name: html-files
            mountPath: "/usr/share/nginx/html"
      volumes:
        - name: html-files
          persistentVolumeClaim:  # 卷类型使用pvc,同时下面名称处填先创建好的pvc1
            claimName: pvc1
***注意及时备份数据,注意及时备份数据,注意及时备份数据***

PVC以及PV的回收
# 这里删除时会一直卡着,我们按ctrl+c看看怎么回事
# kubectl delete pvc pvc1 
persistentvolumeclaim "pvc1" deleted
^C
# 看下pvc发现STATUS是Terminating删除中的状态,我分析是因为服务pod还在占用这个pvc使用中
# kubectl get pvc
# 先删除这个pod
# kubectl delete pod nginx-569546db98-99qpq
# 再看先删除的pvc已经没有了
# kubectl get pvc

第8关 k8s架构师课程之持久化存储StorageClass

大家好,我是博哥爱运维,k8s持久化存储的第三节,给大家带来 StorageClass动态存储的讲解。

我这是直接拿生产中用的实例来作演示,利用**********nfs-client-provisioner*******来生成一个基于nfs的StorageClass,部署配置yaml配置如下,保持为nfs-sc.yaml:
开始创建这个StorageClass:
kubectl apply -f nfs-sc.yaml
# 注意这个是在放kube-system的namespace下面,这里面放置一些偏系统类的服务
kubectl -n kube-system get pod -w
kubectl get sc

apiVersion: v1
kind: ServiceAccount
metadata:
  name: nfs-client-provisioner
  namespace: kube-system

---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: nfs-client-provisioner-runner
rules:
  - apiGroups: [""]
    resources: ["persistentvolumes"]
    verbs: ["get", "list", "watch", "create", "delete"]
  - apiGroups: [""]
    resources: ["persistentvolumeclaims"]
    verbs: ["get", "list", "watch", "update"]
  - apiGroups: ["storage.k8s.io"]
    resources: ["storageclasses"]
    verbs: ["get", "list", "watch"]
  - apiGroups: [""]
    resources: ["events"]
    verbs: ["list", "watch", "create", "update", "patch"]
  - apiGroups: [""]
    resources: ["endpoints"]
    verbs: ["get", "list", "watch", "create", "update", "patch"]

---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: run-nfs-client-provisioner
subjects:
  - kind: ServiceAccount
    name: nfs-client-provisioner
    namespace: kube-system 
roleRef:
  kind: ClusterRole
  name: nfs-client-provisioner-runner
  apiGroup: rbac.authorization.k8s.io

---
kind: Deployment
apiVersion: apps/v1
metadata:
  name: nfs-provisioner-01
  namespace: kube-system
spec:
  replicas: 1
  strategy:
    type: Recreate
  selector:
    matchLabels:
      app: nfs-provisioner-01
  template:
    metadata:
      labels:
        app: nfs-provisioner-01
    spec:
      serviceAccountName: nfs-client-provisioner
      containers:
        - name: nfs-client-provisioner
          image: jmgao1983/nfs-client-provisioner:latest
          imagePullPolicy: IfNotPresent
          volumeMounts:
            - name: nfs-client-root
              mountPath: /persistentvolumes
          env:
            - name: PROVISIONER_NAME
              value: nfs-provisioner-01  # 此处供应者名字供storageclass调用
            - name: NFS_SERVER
              value: 172.24.75.119   # 填入NFS的地址
            - name: NFS_PATH
              value: /nfs_dir   # 填入NFS挂载的目录
      volumes:
        - name: nfs-client-root
          nfs:
            server: 172.24.75.119   # 填入NFS的地址
            path: /nfs_dir   # 填入NFS挂载的目录
---
###这里才是storageClass
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: nfs-boge
provisioner: nfs-provisioner-01
# Supported policies: Delete、 Retain , default is Delete
reclaimPolicy: Retain
我们来基于StorageClass创建一个pvc,看看动态生成的pv是什么效果:
 vim pvc-sc.yaml
 kubectl  apply -f pvc-sc.yaml
 kubectl  get pvc
 kubectl  get pv
 
 
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: pvc-sc
spec:
  storageClassName: nfs-boge
  accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 1Mi
我们修改下nginx的yaml配置,将pvc的名称换成上面的pvc-sc:
修改最后一行就行
kubectl apply -f nginx.yaml 
# 这里注意下,因为是动态生成的pv,所以它的目录基于是一串随机字符串生成的,这时我们直接进到pod内来创建访问页面
kubectl get pods
# kubectl exec -it nginx-57cdc6d9b4-n497g -- bash
root@nginx-57cdc6d9b4-n497g:/# echo 'storageClass used' > /usr/share/nginx/html/index.html
root@nginx-57cdc6d9b4-n497g:/# exit

# curl 10.68.238.54                              
storageClass used

# 我们看下NFS挂载的目录、发现已经出现
# ll /nfs_dir/

第9关 k8s架构师课程之有状态服务StatefulSet

大家好,我是博哥爱运维,K8s是如何来管理有状态服务的呢?跟着博哥来会会它们吧!

1、创建pv
-------------------------------------------

root@node1:~# cat web-pv.yaml 
# mkdir -p /nfs_dir/{web-pv0,web-pv1}
apiVersion: v1
kind: PersistentVolume
metadata:
  name: web-pv0
  labels:
    type: web-pv0
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Retain
  storageClassName: my-storage-class
  nfs:
    path: /nfs_dir/web-pv0
    server: 10.0.1.201
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: web-pv1
  labels:
    type: web-pv1
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Retain
  storageClassName: my-storage-class
  nfs:
    path: /nfs_dir/web-pv1
    server: 10.0.1.201


2、创建pvc(这一步可以省去让其自动创建,这里手动创建是为了让大家能更清楚在sts里面pvc的创建过程)
-------------------------------------------
这一步非常非常的关键,因为如果创建的PVC的名称和StatefulSet中的名称没有对应上,
那么StatefulSet中的Pod就肯定创建不成功.

3、创建Service 和 StatefulSet
-------------------------------------------
在上一步中我们已经创建了名为www-web-0的PVC了,接下来创建一个service和statefulset,
service的名称可以随意取,但是statefulset的名称已经定死了,为web,
并且statefulset中的volumeClaimTemplates_name必须为www,volumeMounts_name也必须为www。
只有这样,statefulset中的pod才能通过命名来匹配到PVC,否则会创建失败。

root@node1:~# cat web.yaml 
apiVersion: v1
kind: Service
metadata:
  name: web-headless
  labels:
    app: nginx
spec:
  ports:
  - port: 80
    name: web
  clusterIP: None
  selector:
    app: nginx
---

apiVersion: v1
kind: Service
metadata:
  name: web
  labels:
    app: nginx
spec:
  ports:
  - port: 80
    name: web
  selector:
    app: nginx

---
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: web
spec:
  selector:
    matchLabels:
      app: nginx # has to match .spec.template.metadata.labels
  serviceName: "nginx"
  replicas: 2 # by default is 1
  template:
    metadata:
      labels:
        app: nginx # has to match .spec.selector.matchLabels
    spec:
      terminationGracePeriodSeconds: 10
      containers:
      - name: nginx
        image: nginx
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 80
          name: web
        volumeMounts:
        - name: www
          mountPath: /usr/share/nginx/html
  volumeClaimTemplates:
  - metadata:
      name: www
    spec:
      accessModes: [ "ReadWriteOnce" ]
      storageClassName: "my-storage-class"
      resources:
        requests:
          storage: 1Gi

第10关 k8s架构师课程之一次性和定时任务

原创2021-03-21 20:14·博哥爱运维

Job, CronJob

cronjob

上面的job是一次性任务,

apiVersion: batch/v1beta1     # <---------  当前 CronJob 的 apiVersion
kind: CronJob                 # <---------  当前资源的类型
metadata:
  name: hello
spec:
  schedule: "* * * * *"      # <---------  schedule 指定什么时候运行 Job,其格式与 Linux crontab 一致,这里 * * * * * 的含义是每一分钟启动一次
  jobTemplate:               # <---------  定义 Job 的模板,格式与前面 Job 一致
    spec:
      template:
        spec:
          containers:
          - name: hello
            image: busybox
            command: ["echo","boge like cronjob."]
          restartPolicy: OnFailure

第11关 k8s架构师课程之RBAC角色访问控制

原创2021-03-22 21:30·博哥爱运维

RBAC 基于角色(Role)的访问控制

控制访问权限

第一类的实战这里先暂时以早期的helm2来作下讲解

titller相当于helm的服务端,它是需要有权限在K8s中创建各类资源的,在初始安装使用时,如果没有配置RBAC权限,我们会看到如下报错:

root@node1:~# helm install stable/mysql
Error: no available release name found
管理员权限查看
cat /root/.kube/config

这时,我们可以来快速解决这个问题,创建sa关联K8s自带的最高权限的ClusterRole(生产中建议不要这样做,权限太高有安全隐患,这个就和linux的root管理帐号一样,一般都是建议通过sudo来控制帐号权限)

kubectl create serviceaccount --namespace kube-system tiller
kubectl create clusterrolebinding tiller-cluster-rule --clusterrole=cluster-admin --serviceaccount=kube-system:tiller
kubectl patch deploy --namespace kube-system tiller-deploy -p '{"spec":{"template":{"spec":{"serviceAccount":"tiller"}}}}'

第二类,我这里就直接以我在生产中实施的完整脚本来做讲解及实战,相信会给大家带来一个全新的学习感受,并能很快掌握它们

***这是超大的福利***
0.用法、生成后权限查看
1.某个namespace所有权限的脚本(新建namespace)
2.创建已经存在的namespace的权限的脚本
3.创建只读权限
4.创建多集群融合配置(把脚本拿到每个集群跑生成配置)
0.用法   sh 1.sh 
Use 1.sh NAMESPACE ENDPOINT
	SH 1.SH 命名空间名称 访问地址

[root@node01 mnt]# bash 1.sh
All namespaces is here: 
default
ingress-nginx
kube-node-lease
kube-public
kube-system
endpoint server if local network you can use https://172.24.75.119:6443
Use 1.sh NAMESPACE ENDPOINT

结果:
[root@node01 mnt]# sh 1.sh webbobo https://172.24.75.119:6443
All namespaces is here: 
default
ingress-nginx
kube-node-lease
kube-public
kube-system
webbobo
endpoint server if local network you can use https://172.24.75.119:6443
webbobo
namespace: webbobo was exist.
serviceaccount/webbobo-user created
Warning: rbac.authorization.k8s.io/v1beta1 Role is deprecated in v1.17+, unavailable in v1.22+; use rbac.authorization.k8s.io/v1 Role
role.rbac.authorization.k8s.io/webbobo-user-full-access created
Warning: rbac.authorization.k8s.io/v1beta1 RoleBinding is deprecated in v1.17+, unavailable in v1.22+; use rbac.authorization.k8s.io/v1 RoleBinding
rolebinding.rbac.authorization.k8s.io/webbobo-user-view created
resourcequota/webbobo-compute-resources created
Name:                   webbobo-compute-resources
Namespace:              webbobo
Resource                Used  Hard
--------                ----  ----
limits.cpu              0     2
limits.memory           0     4Gi
persistentvolumeclaims  0     5
pods                    0     10
requests.cpu            0     1
requests.memory         0     2Gi
services                0     10

查看访问配置权限
cat ./kube_config/webbobo.kube.conf 

使用:
kubectl  --kubeconfig=./kube_config/web.kube.conf get nodes
#Forbidden代表权限不足
kubectl  --kubeconfig=./kube_config/web.kube.conf get pods
#可用
kubectl --kubeconfig=./kube_config/webbobo.kube.conf get pods

kubectl get sa -n webbobo
kubectl get role -n webbobo
kubectl get rolebings -n webbobo
kubectl get delete -n webbobo
1.创建对指定(新建)namespace有***所有权限***的kube-config(新建)
#!/bin/bash
#
# This Script based on  https://jeremievallee.com/2018/05/28/kubernetes-rbac-namespace-user.html
# K8s'RBAC doc:         https://kubernetes.io/docs/reference/access-authn-authz/rbac
# Gitlab'CI/CD doc:     hhttps://docs.gitlab.com/ee/user/permissions.html#running-pipelines-on-protected-branches
#
# In honor of the remarkable Windson

BASEDIR="$(dirname "$0")"
folder="$BASEDIR/kube_config"

echo -e "All namespaces is here: \n$(kubectl get ns|awk 'NR!=1{print $1}')"
echo "endpoint server if local network you can use $(kubectl cluster-info |awk '/Kubernetes/{print $NF}')"
#打印api的地址

namespace=$1
endpoint=$(echo "$2" | sed -e 's,https\?://,,g')
#能够访问到的api地址

if [[ -z "$endpoint" || -z "$namespace" ]]; then
    echo "Use "$(basename "$0")" NAMESPACE ENDPOINT";
    exit 1;
fi
#缺少参数则退出

if ! kubectl get ns|awk 'NR!=1{print $1}'|grep -w "$namespace";then kubectl create ns "$namespace";else echo "namespace: $namespace was exist.";exit 1 ;fi
#命名空间是否存在

#1.创建账号
echo "---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: $namespace-user
  namespace: $namespace
---
#2.创建角色Role对指定的namespace生效、CLU  role对生效
kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: $namespace-user-full-access
  namespace: $namespace
rules:
#所有权限用*代替
- apiGroups: ['', 'extensions', 'apps', 'metrics.k8s.io']
  resources: ['*']
  verbs: ['*']
- apiGroups: ['batch']
  resources:
  - jobs
  - cronjobs
  verbs: ['*']
---
#3.角色绑定
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: $namespace-user-view
  namespace: $namespace
subjects:
- kind: ServiceAccount
  name: $namespace-user
  namespace: $namespace
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: $namespace-user-full-access
---
# https://kubernetes.io/zh/docs/concepts/policy/resource-quotas/
apiVersion: v1
kind: ResourceQuota
metadata:
  name: $namespace-compute-resources
  namespace: $namespace
spec:
#做资源限制
  hard:
    pods: "10"
    services: "10"
    persistentvolumeclaims: "5"
    requests.cpu: "1"
    requests.memory: 2Gi
    limits.cpu: "2"
    limits.memory: 4Gi" | kubectl apply -f -
kubectl -n $namespace describe quota $namespace-compute-resources
mkdir -p $folder
#基于账号提取密钥名称、Token、证书
tokenName=$(kubectl get sa $namespace-user -n $namespace -o "jsonpath={.secrets[0].name}")
token=$(kubectl get secret $tokenName -n $namespace -o "jsonpath={.data.token}" | base64 --decode)
certificate=$(kubectl get secret $tokenName -n $namespace -o "jsonpath={.data['ca\.crt']}")

echo "apiVersion: v1
kind: Config
preferences: {}
clusters:
- cluster:
    certificate-authority-data: $certificate
    server: https://$endpoint
  name: $namespace-cluster
users:
- name: $namespace-user
  user:
    as-user-extra: {}
    client-key-data: $certificate
    token: $token
contexts:
- context:
    cluster: $namespace-cluster
    namespace: $namespace
    user: $namespace-user
  name: $namespace
current-context: $namespace" > $folder/$namespace.kube.conf
2.创建对指定namespace有所有权限的kube-config(在已有的namespace中创建)
#!/bin/bash

BASEDIR="$(dirname "$0")"
folder="$BASEDIR/kube_config"

echo -e "All namespaces is here: \n$(kubectl get ns|awk 'NR!=1{print $1}')"
echo "endpoint server if local network you can use $(kubectl cluster-info |awk '/Kubernetes/{print $NF}')"

namespace=$1
endpoint=$(echo "$2" | sed -e 's,https\?://,,g')

if [[ -z "$endpoint" || -z "$namespace" ]]; then
    echo "Use "$(basename "$0")" NAMESPACE ENDPOINT";
    exit 1;
fi


echo "---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: $namespace-user
  namespace: $namespace
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: $namespace-user-full-access
  namespace: $namespace
rules:
- apiGroups: ['', 'extensions', 'apps', 'metrics.k8s.io']
  resources: ['*']
  verbs: ['*']
- apiGroups: ['batch']
  resources:
  - jobs
  - cronjobs
  verbs: ['*']
---
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: $namespace-user-view
  namespace: $namespace
subjects:
- kind: ServiceAccount
  name: $namespace-user
  namespace: $namespace
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: $namespace-user-full-access" | kubectl apply -f -

mkdir -p $folder
tokenName=$(kubectl get sa $namespace-user -n $namespace -o "jsonpath={.secrets[0].name}")
token=$(kubectl get secret $tokenName -n $namespace -o "jsonpath={.data.token}" | base64 --decode)
certificate=$(kubectl get secret $tokenName -n $namespace -o "jsonpath={.data['ca\.crt']}")

echo "apiVersion: v1
kind: Config
preferences: {}
clusters:
- cluster:
    certificate-authority-data: $certificate
    server: https://$endpoint
  name: $namespace-cluster
users:
- name: $namespace-user
  user:
    as-user-extra: {}
    client-key-data: $certificate
    token: $token
contexts:
- context:
    cluster: $namespace-cluster
    namespace: $namespace
    user: $namespace-user
  name: $namespace
current-context: $namespace" > $folder/$namespace.kube.conf
3.创建只读权限的、主要就是改了verbs
#!/bin/bash

BASEDIR="$(dirname "$0")"
folder="$BASEDIR/kube_config"

echo -e "All namespaces is here: \n$(kubectl get ns|awk 'NR!=1{print $1}')"
echo "endpoint server if local network you can use $(kubectl cluster-info |awk '/Kubernetes/{print $NF}')"

namespace=$1
endpoint=$(echo "$2" | sed -e 's,https\?://,,g')

if [[ -z "$endpoint" || -z "$namespace" ]]; then
    echo "Use "$(basename "$0")" NAMESPACE ENDPOINT";
    exit 1;
fi


echo "---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: $namespace-user-readonly
  namespace: $namespace
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: $namespace-user-readonly-access
  namespace: $namespace
rules:
- apiGroups: ['', 'extensions', 'apps', 'metrics.k8s.io']
  resources: ['pods', 'pods/log']
  verbs: ['get', 'list', 'watch']
- apiGroups: ['batch']
  resources: ['jobs', 'cronjobs']
  verbs: ['get', 'list', 'watch']
---
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: $namespace-user-view-readonly
  namespace: $namespace
subjects:
- kind: ServiceAccount
  name: $namespace-user-readonly
  namespace: $namespace
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: $namespace-user-readonly-access" | kubectl apply -f -

mkdir -p $folder
tokenName=$(kubectl get sa $namespace-user-readonly -n $namespace -o "jsonpath={.secrets[0].name}")
token=$(kubectl get secret $tokenName -n $namespace -o "jsonpath={.data.token}" | base64 --decode)
certificate=$(kubectl get secret $tokenName -n $namespace -o "jsonpath={.data['ca\.crt']}")

echo "apiVersion: v1
kind: Config
preferences: {}
clusters:
- cluster:
    certificate-authority-data: $certificate
    server: https://$endpoint
  name: $namespace-cluster-readonly
users:
- name: $namespace-user-readonly
  user:
    as-user-extra: {}
    client-key-data: $certificate
    token: $token
contexts:
- context:
    cluster: $namespace-cluster-readonly
    namespace: $namespace
    user: $namespace-user-readonly
  name: $namespace
current-context: $namespace" > $folder/$namespace-readonly.kube.conf
4.大招---多集群融合配置
#!/bin/bash
# describe: create k8s cluster all namespaces resources with readonly clusterrole, no exec 、delete ...

# look system default to study:
# kubectl describe clusterrole view

# restore all change:
#kubectl -n kube-system delete sa all-readonly-${clustername}
#kubectl delete clusterrolebinding all-readonly-${clustername}
#kubectl delete clusterrole all-readonly-${clustername}


clustername=$1

Help(){
    echo "Use "$(basename "$0")" ClusterName(example: k8s1|k8s2|k8s3|delk8s1|delk8s2|delk8s3|3in1)";
    exit 1;
}

if [[ -z "${clustername}" ]]; then
    Help
fi

case ${clustername} in
#二进制安装时指定名称
#查看命令kubectl config get-contexts
    k8s1)
    endpoint="https://x.x.x.x:123456"
    ;;
    k8s2)
    endpoint="https://x.x.x.x:123456"
    ;;
    k8s3)
    endpoint="https://x.x.x.x:123456"
    ;;
    delk8s1)
    kubectl -n kube-system delete sa all-readonly-k8s1
    kubectl delete clusterrolebinding all-readonly-k8s1
    kubectl delete clusterrole all-readonly-k8s1
    echo "${clustername} successful."
    exit 0
    ;;
    delk8s2)
    kubectl -n kube-system delete sa all-readonly-k8s2
    kubectl delete clusterrolebinding all-readonly-k8s2
    kubectl delete clusterrole all-readonly-k8s2
    echo "${clustername} successful."
    exit 0
    ;;
    delk8s3)
    kubectl -n kube-system delete sa all-readonly-k8s3
    kubectl delete clusterrolebinding all-readonly-k8s3
    kubectl delete clusterrole all-readonly-k8s3
    echo "${clustername} successful."
    exit 0
    ;;
    3in1)
    KUBECONFIG=./all-readonly-k8s1.conf:all-readonly-k8s2.conf:all-readonly-k8s3.conf kubectl config view --flatten > ./all-readonly-3in1.conf
    kubectl --kubeconfig=./all-readonly-3in1.conf config use-context "k8s3"
    kubectl --kubeconfig=./all-readonly-3in1.conf config set-context "k8s3" --namespace="default"
    kubectl --kubeconfig=./all-readonly-3in1.conf config get-contexts
    echo -e "\n\n\n"
    cat ./all-readonly-3in1.conf |base64 -w 0
    exit 0
    ;;
    *)
    Help
esac

echo "---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: all-readonly-${clustername}
rules:
- apiGroups:
  - ''
  resources:
  - configmaps
  - endpoints
  - persistentvolumes
  - persistentvolumeclaims
  - pods
  - replicationcontrollers
  - replicationcontrollers/scale
  - serviceaccounts
  - services
  - nodes
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - ''
  resources:
  - bindings
  - events
  - limitranges
  - namespaces/status
  - pods/log
  - pods/status
  - replicationcontrollers/status
  - resourcequotas
  - resourcequotas/status
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - ''
  resources:
  - namespaces
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - apps
  resources:
  - controllerrevisions
  - daemonsets
  - deployments
  - deployments/scale
  - replicasets
  - replicasets/scale
  - statefulsets
  - statefulsets/scale
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - autoscaling
  resources:
  - horizontalpodautoscalers
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - batch
  resources:
  - cronjobs
  - jobs
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - extensions
  resources:
  - daemonsets
  - deployments
  - deployments/scale
  - ingresses
  - networkpolicies
  - replicasets
  - replicasets/scale
  - replicationcontrollers/scale
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - policy
  resources:
  - poddisruptionbudgets
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - networking.k8s.io
  resources:
  - networkpolicies
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - metrics.k8s.io
  resources:
  - pods
  verbs:
  - get
  - list
  - watch" | kubectl apply -f -

kubectl -n kube-system create sa all-readonly-${clustername}
kubectl create clusterrolebinding all-readonly-${clustername} --clusterrole=all-readonly-${clustername} --serviceaccount=kube-system:all-readonly-${clustername}

tokenName=$(kubectl -n kube-system get sa all-readonly-${clustername} -o "jsonpath={.secrets[0].name}")
token=$(kubectl -n kube-system get secret $tokenName -o "jsonpath={.data.token}" | base64 --decode)
certificate=$(kubectl -n kube-system get secret $tokenName -o "jsonpath={.data['ca\.crt']}")

echo "apiVersion: v1
kind: Config
preferences: {}
clusters:
- cluster:
    certificate-authority-data: $certificate
    server: $endpoint
  name: all-readonly-${clustername}-cluster
users:
- name: all-readonly-${clustername}
  user:
    as-user-extra: {}
    client-key-data: $certificate
    token: $token
contexts:
- context:
    cluster: all-readonly-${clustername}-cluster
    user: all-readonly-${clustername}
  name: ${clustername}
current-context: ${clustername}" > ./all-readonly-${clustername}.conf

第12关 k8s架构师课程之业务日志收集上节介绍、下节实战

业务日志

原创2021-03-24 21:30·博哥爱运维

elasticsearch log-pilot kibana 、 prometheus-oprator grafana webhook

日志收集

现在市面上大多数课程都是以EFK来作来K8s项目的日志解决方案,它包括三个组件:Elasticsearch, Fluentd(filebeat), Kibana;Elasticsearch 是日志存储和日志搜索引擎,Fluentd 负责把k8s集群的日志发送给 Elasticsearch, Kibana 则是可视化界面查看和检索存储在 Elasticsearch 的数据。

但根据生产中实际使用情况来看,它有以下弊端:

1、日志收集系统 EFK是在每个kubernetes的NODE节点以daemonset的形式启动一个fluentd的pod,来收集NODE节点上的日志,如容器日志(/var/log/containers/*.log),但里面无法作细分,想要的和不想要的都收集进来了,带来的后面就是磁盘IO压力会比较大,日志过滤麻烦。

2、无法收集对应POD里面的业务日志 上面第1点只能收集pod的stdout(打印的日志、而不是业务日志)日志,但是pod内如有需要收集的业务日志,像pod内的/tmp/datalog/*.log,那EFK是无能为力的,只能是在pod内启动多个容器(filebeat)去收集容器内日志,但这又会带来的是pod多容器性能的损耗,这个接下来会详细讲到。

3、fluentd的采集速率性能较低,只能不到filebeat的1/10的性能。

基于此,我通过调研发现了阿里开源的智能容器采集工具 Log-Pilot,github地址:
https://github.com/AliyunContainerService/log-pilot

下面以sidecar 模式和log-pilot这两种方式的日志收集形式做个详细对比说明:

sidecar 模式,这种需要我们在每个 Pod 中都附带一个 logging 容器来进行本 Pod 内部容器的日志采集,一般采用共享卷的方式,但是对于这一种模式来说,很明显的一个问题就是占用的资源比较多,尤其是在集群规模比较大的情况下,

另一种模式是 Node 模式,这种模式是我们在每个 Node 节点上仅需部署一个 logging 容器来进行本 Node 所有容器的日志采集。这样跟前面的模式相比最明显的优势就是占用资源比较少,同样在集群规模比较大的情况下表现出的优势越明显,同时这也是社区推荐的一种模式。

经过多方面测试,log-pilot对现有业务pod侵入性很小,只需要在原有pod的内传入几行env环境变量,即可对此pod相关的日志进行收集,已经测试了后端接收的工具有logstash、elasticsearch、kafka、redis、file,均OK,下面开始部署整个日志收集环境。

1.我们这里用一个tomcat服务来模拟业务服务,用log-pilot分别收集它的stdout以及容器内的业务数据日志文件到指定后端存储(这里分别以elasticsearch、kafka的这两种企业常用的接收工具来做示例)
1.只传个环境变量就能收集日志了

准备好相应的yaml配置
vim tomcat-test.yaml
kubectl apply -f tomcat-test.yaml 

apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: tomcat
  name: tomcat
spec:
  replicas: 1
  selector:
    matchLabels:
      app: tomcat
  template:
    metadata:
      labels:
        app: tomcat
    spec:
      tolerations:
      - key: "node-role.kubernetes.io/master"
        effect: "NoSchedule"
      containers:
      - name: tomcat
        image: "tomcat:7.0"
        env:      # 注意点一,添加相应的环境变量(下面收集了两块日志1、stdout 2、/usr/local/tomcat/logs/catalina.*.log)
        - name: aliyun_logs_tomcat-syslog   # 如日志发送到es,那index名称为 tomcat-syslog
          value: "stdout"
        - name: aliyun_logs_tomcat-access   # 如日志发送到es,那index名称为 tomcat-access
          value: "/usr/local/tomcat/logs/catalina.*.log"
        volumeMounts:   
        # 注意点二,对pod内要收集的业务日志目录需要进行共享,可以收集多个目录下的日志文件
        #挂载
          - name: tomcat-log
            mountPath: /usr/local/tomcat/logs
      volumes:
        - name: tomcat-log
          emptyDir: {}
2.创建es6.yaml  es和kibana 是一起的
2.3.4是一起的
接收工具ES、es和kibana的版本号要一样
vim elasticsearch.6.8.13-statefulset.yaml
kubectl apply -f elasticsearch.6.8.13-statefulset.yaml

apiVersion: apps/v1
kind: StatefulSet
metadata:
  labels:
    addonmanager.kubernetes.io/mode: Reconcile
    k8s-app: elasticsearch-logging
    version: v6.8.13
  name: elasticsearch-logging
  # namespace: logging
spec:
  replicas: 1
  revisionHistoryLimit: 10
  selector:
    matchLabels:
      k8s-app: elasticsearch-logging
      version: v6.8.13
  serviceName: elasticsearch-logging
  template:
    metadata:
      labels:
        k8s-app: elasticsearch-logging
        version: v6.8.13
    spec:
      #nodeSelector:		#测试不用这个节点选择选项
      #  esnode: "true"  ## 注意给想要运行到的node打上相应labels
      containers:
      - env:
        - name: NAMESPACE
          valueFrom:
            fieldRef:
              apiVersion: v1
              fieldPath: metadata.namespace
        - name: cluster.name
          value: elasticsearch-logging-0
        - name: ES_JAVA_OPTS
          value: "-Xms256m -Xmx256m"
        image: elastic/elasticsearch:6.8.13
        name: elasticsearch-logging
        ports:
        - containerPort: 9200
          name: db
          protocol: TCP
        - containerPort: 9300
          name: transport
          protocol: TCP
        volumeMounts:
        - mountPath: /usr/share/elasticsearch/data
          name: elasticsearch-logging
      dnsConfig:
        options:
        - name: single-request-reopen
      initContainers:
      - command:
        - /bin/sysctl
        - -w
        - vm.max_map_count=262144
        image: busybox
        imagePullPolicy: IfNotPresent
        name: elasticsearch-logging-init
        resources: {}
        securityContext:
          privileged: true
      - name: fix-permissions
        image: busybox
        command: ["sh", "-c", "chown -R 1000:1000 /usr/share/elasticsearch/data"]
        securityContext:
          privileged: true
        volumeMounts:
        - name: elasticsearch-logging
          mountPath: /usr/share/elasticsearch/data
      volumes:
      - name: elasticsearch-logging
        hostPath:
          path: /esdata
---
apiVersion: v1
kind: Service
metadata:
  labels:
    k8s-app: elasticsearch-logging
  name: elasticsearch
  # namespace: logging
spec:
  ports:
  - port: 9200
    protocol: TCP
    targetPort: db
  selector:
    k8s-app: elasticsearch-logging
  type: ClusterIP
3.创建kibana、2.3.4是一起的
vim kibana.6.8.13.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: kibana
  # namespace: logging
  labels:
    app: kibana
spec:
  selector:
    matchLabels:
      app: kibana
  template:
    metadata:
      labels:
        app: kibana
    spec:
      containers:
      - name: kibana
        image: elastic/kibana:6.8.13
        resources:
          limits:
            cpu: 1000m
          requests:
            cpu: 100m
        env:
          - name: ELASTICSEARCH_URL
            value: http://elasticsearch:9200
            #elasticsearch的地址就是elasticsearch的svc地址
        ports:
        - containerPort: 5601
---
apiVersion: v1
kind: Service
metadata:
  name: kibana
  # namespace: logging
  labels:
    app: kibana
spec:
  ports:
  - port: 5601
    protocol: TCP
    targetPort: 5601
  type: ClusterIP
  selector:
    app: kibana
---
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: kibana
  # namespace: logging
spec:
  rules:
  - host: kibana.boge.com
  ###域名自己换
    http:
      paths:
      - path: /
        backend:
          serviceName: kibana
          servicePort: 5601

image-20220814191841638![mag20220814191841638](C:\Users\123\AppData\Roaming\Typora\typora-user-images\image-20220814191841638.png

image-20220814192901520
4.部署log-pilot.yml\\\\Daemonset---每个node都会跑一个日志代理、2.3.4是一起的
收集日志标准tomcat-test里传入的env环境变量
配置本地域名解析kubectl get ingress
echo "172.24.75.119 kibana.boge.com" >> /etc/hosts

查看kibana的svc是内网ClusterIP,要把他变成NodePort才能访问修改方法见上面网址
kubectl edit svc kibana
kubectl get svc
NAME              TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
elasticsearch     ClusterIP   10.68.10.41     >        9200/TCP         45m
kibana            NodePort    10.68.127.151   >        5601:30752/TCP   43m

vim log-pilot.yml # 后端输出的elasticsearch

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: log-pilot
  labels:
    app: log-pilot
  # 设置期望部署的namespace
#  namespace: ns-elastic
spec:
  selector:
    matchLabels:
      app: log-pilot
  updateStrategy:
    type: RollingUpdate
  template:
    metadata:
      labels:
        app: log-pilot
      annotations:
        scheduler.alpha.kubernetes.io/critical-pod: ''
    spec:
      # 是否允许部署到Master节点上
      #tolerations:
      #- key: node-role.kubernetes.io/master
      #  effect: NoSchedule
      containers:
      - name: log-pilot
        # 版本请参考https://github.com/AliyunContainerService/log-pilot/releases
        image: registry.cn-hangzhou.aliyuncs.com/acs/log-pilot:0.9.7-filebeat
        resources:
          limits:
            memory: 500Mi
          requests:
            cpu: 200m
            memory: 200Mi
        env:
          - name: "NODE_NAME"
            valueFrom:
              fieldRef:
                fieldPath: spec.nodeName
          ##--------------------------------
#          - name: "LOGGING_OUTPUT"
#            value: "logstash"
#          - name: "LOGSTASH_HOST"
#            value: "logstash-g1"
#          - name: "LOGSTASH_PORT"
#            value: "5044"
          ##--------------------------------
          - name: "LOGGING_OUTPUT"
            value: "elasticsearch"
          ## 请确保集群到ES网络可达
          - name: "ELASTICSEARCH_HOSTS"
            value: "elasticsearch:9200"
          ## 配置ES访问权限
          #- name: "ELASTICSEARCH_USER"
          #  value: "{es_username}"
          #- name: "ELASTICSEARCH_PASSWORD"
          #  value: "{es_password}"
          ##--------------------------------
          ## https://github.com/AliyunContainerService/log-pilot/blob/master/docs/filebeat/docs.md
          ## to file need configure 1
#          - name: LOGGING_OUTPUT
#            value: file
#          - name: FILE_PATH
#            value: /tmp
#          - name: FILE_NAME
#            value: filebeat.log
        volumeMounts:
        - name: sock
          mountPath: /var/run/docker.sock
        - name: root
          mountPath: /host
          readOnly: true
        - name: varlib
          mountPath: /var/lib/filebeat
        - name: varlog
          mountPath: /var/log/filebeat
        - name: localtime
          mountPath: /etc/localtime
          readOnly: true
         ## to file need configure 2
#        - mountPath: /tmp
#          name: mylog
        livenessProbe:
          failureThreshold: 3
          exec:
            command:
            - /pilot/healthz
          initialDelaySeconds: 10
          periodSeconds: 10
          successThreshold: 1
          timeoutSeconds: 2
        securityContext:
          capabilities:
            add:
            - SYS_ADMIN
      terminationGracePeriodSeconds: 30
      volumes:
      - name: sock
        hostPath:
          path: /var/run/docker.sock
      - name: root
        hostPath:
          path: /
      - name: varlib
        hostPath:
          path: /var/lib/filebeat
          type: DirectoryOrCreate
      - name: varlog
        hostPath:
          path: /var/log/filebeat
          type: DirectoryOrCreate
      - name: localtime
        hostPath:
          path: /etc/localtime
       ## to file need configure 3
#      - hostPath:
#          path: /tmp/mylog
#          type: ""
#        name: mylog

5.6是一起的

5.独立的、、、部署log-pilot2-kafka.yaml----后端输出带哦kafka---node01
资源不足可以把es和kibana删掉
记得该ip
vi log-pilot2-kafka.yaml #后端输出到kafka
:%s+configMapKeyRee+configMapKeyRef+g批量替换

---
apiVersion: v1
kind: ConfigMap
metadata:
  name: log-pilot2-configuration
  #namespace: ns-elastic
data:
  logging_output: "kafka"
  kafka_brokers: "172.24.75.115:9092"
  kafka_version: "0.10.0"
  # configure all valid topics in kafka
  # when disable auto-create topic
  kafka_topics: "tomcat-syslog,tomcat-access"
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: log-pilot2
  #namespace: ns-elastic
  labels:
    k8s-app: log-pilot2
spec:
  selector:
    matchLabels:
      k8s-app: log-pilot2
  updateStrategy:
    type: RollingUpdate
  template:
    metadata:
      labels:
        k8s-app: log-pilot2
    spec:
      tolerations:
      - key: node-role.kubernetes.io/master
        effect: NoSchedule
      containers:
      - name: log-pilot2
#
#        wget https://github.com/AliyunContainerService/log-pilot/archive/v0.9.7.zip
#        unzip log-pilot-0.9.7.zip
#        vim ./log-pilot-0.9.7/assets/filebeat/config.filebeat
#        ...
#        output.kafka:
#            hosts: [$KAFKA_BROKERS]
#            topic: '%{[topic]}'
#            codec.format:
#                string: '%{[message]}'
#        ...
        image: registry.cn-hangzhou.aliyuncs.com/acs/log-pilot:0.9.7-filebeat
        env:
          - name: "LOGGING_OUTPUT"
            valueFrom:
              configMapKeyRef:
                name: log-pilot2-configuration
                key: logging_output
          - name: "KAFKA_BROKERS"
            valueFrom:
              configMapKeyRef:
                name: log-pilot2-configuration
                key: kafka_brokers
          - name: "KAFKA_VERSION"
            valueFrom:
              configMapKeyRef:
                name: log-pilot2-configuration
                key: kafka_version
          - name: "NODE_NAME"
            valueFrom:
              fieldRef:
                fieldPath: spec.nodeName
        volumeMounts:
        - name: sock
          mountPath: /var/run/docker.sock
        - name: logs
          mountPath: /var/log/filebeat
        - name: state
          mountPath: /var/lib/filebeat
        - name: root
          mountPath: /host
          readOnly: true
        - name: localtime
          mountPath: /etc/localtime
        # configure all valid topics in kafka
        # when disable auto-create topic
        - name: config-volume
          mountPath: /etc/filebeat/config
        securityContext:
          capabilities:
            add:
            - SYS_ADMIN
      terminationGracePeriodSeconds: 30
      volumes:
      - name: sock
        hostPath:
          path: /var/run/docker.sock
          type: Socket
      - name: logs
        hostPath:
          path: /var/log/filebeat
          type: DirectoryOrCreate
      - name: state
        hostPath:
          path: /var/lib/filebeat
          type: DirectoryOrCreate
      - name: root
        hostPath:
          path: /
          type: Directory
      - name: localtime
        hostPath:
          path: /etc/localtime
          type: File
      # kubelet sync period
      - name: config-volume
        configMap:
          name: log-pilot2-configuration
          items:
          - key: kafka_topics
            path: kafka_topics
6.部署kafka集群---node04
把docker-copose装好
scp /etc/kubeasz/bin/docker-compose 172.24.75.115:/bin
cd /tmp
mkdir /kafka

# 部署前准备
# 0. 先把代码pull到本地
# https://github.com/wurstmeister/kafka-docker
# 修改docker-compose.yml为:
#——------------------------------
version: '2'
services:
  zookeeper:
    image: wurstmeister/zookeeper
    ports:
      - "2181:2181"
  kafka:
    #build: .
    image: wurstmeister/kafka
    ports:
      - "9092:9092"
    environment:
      KAFKA_ADVERTISED_HOST_NAME: 172.24.75.114 # docker运行的机器IP
      KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
    volumes:
      - /var/run/docker.sock:/var/run/docker.sock
      - /nfs_storageclass/kafka:/kafka
#——------------------------------


6.补充创建kafka后的操作--node04
-----运行docker-compose
# 1. docker-compose setup:
# docker-compose up -d
Recreating kafka-docker-compose_kafka_1   ... done
Starting kafka-docker-compose_zookeeper_1 ... done

# 2. result look:---看到zook和kafka都起来
# docker-compose ps
              Name                            Command               State                    Ports                  
--------------------------------------------------------------------------------------------------------------------
kafka-docker-compose_kafka_1       start-kafka.sh                   Up      0.0.0.0:9092->9092/tcp                  
kafka-docker-compose_zookeeper_1   /bin/sh -c /usr/sbin/sshd  ...   Up      0.0.0.0:2181->2181/tcp, 22/tcp,         
                                                                            2888/tcp, 3888/tcp                      
# 3. run test-docker进入kafka
bash-4.4# docker run --rm -v /var/run/docker.sock:/var/run/docker.sock -e HOST_IP=172.24.75.115 -e ZK=172.24.75.115:2181 -i -t wurstmeister/kafka /bin/bash

# 4. list topic---列出kafka---topic
bash-4.4# kafka-topics.sh --zookeeper 172.24.75.115:2181 --list
tomcat-access
tomcat-syslog

# 5. consumer topic data:
bash-4.4# kafka-console-consumer.sh --bootstrap-server 172.24.75.115:9092 --topic tomcat-access --from-beginning

第13关 k8s架构师课程之私有镜像仓库-Harbor

原创2021-03-26 17:36·博哥爱运维

大家好,我是博哥爱运维,建议是不要将harbor部署在k8s上,这里博哥就直接以第一种离线的方式来安装harbor

# 离线形式安装harbor私有镜像仓库---node04

1.创建目录及下载harbor离线包----node04
 mkdir /data && cd /data
wget https://github.com/goharbor/harbor/releases/download/v2.2.0/harbor-offline-installer-v2.2.0.tgz---------离线包自己下载了保存好
tar xf harbor-offline-installer-v2.2.0.tgz && rm harbor-offline-installer-v2.2.0.tgz

## 修改harbor配置
cd /data/harbor
cp harbor.yml.tmpl harbor.yml
    5 hostname: harbor.boge.com
    17   certificate: /data/harbor/ssl/tls.cert
    18   private_key: /data/harbor/ssl/tls.key
    34 harbor_admin_password: boge666

2.创建harbor访问域名证书
mkdir /data/harbor/ssl && cd /data/harbor/ssl
openssl genrsa -out tls.key 2048
openssl req -new -x509 -key tls.key -out tls.cert -days 360 -subj /CN=*.boge.com

3.准备好单机编排工具`docker-compose`
> 从二进制安装k8s项目的bin目录拷贝过来-----从node01拷---->node04
scp /etc/kubeasz/bin/docker-compose 172.24.75.115:/usr/bin/

> 也可以在docker官方进行下载
https://docs.docker.com/compose/install/

4. 开始安装
./install.sh

5. 推送镜像到harbor
每个节点都要加hosts
##node04的ip(跑harbor的ip)
echo '172.24.75.141 harbor.boge.com' >> /etc/hosts
先打标签、在登陆push
docker login harbor.boge.com
docker tag nginx:latest  harbor.boge.com/library/nginx:latest
docker push harbor.boge.com/library/nginx:1.18.0-alpine

###浏览器进入harbor控制台:---node04的ip+/harbor
47.103.13.111/harbor
部署harbor公网地址/harbor

6.在其他节点上面拉取harbor镜像
> 在集群每个 node 节点进行如下配置
> ssh to 10.0.1.201(centos7)

7.所有节点都要做
每个节点都要加hosts
##node04的ip(跑harbor的ip)
echo '172.24.75.141 harbor.boge.com' >> /etc/hosts
mkdir -p /etc/docker/certs.d/harbor.boge.com
#    node04的ip--跑harbor的ip
scp 172.24.75.141:/data/harbor/ssl/tls.cert /etc/docker/certs.d/harbor.boge.com/ca.crt
docker pull harbor.boge.com/library/nginx:latest


8 看看harbor正常不---不正常就重启harbor---node04
docker-compose ps
docker-compose down -v
docker-compose up -d
docker ps|grep harbor

## 附(引用自 https://github.com/easzlab/kubeasz):
containerd配置信任harbor证书
在集群每个 node 节点进行如下配置(假设ca.pem为自建harbor的CA证书)

ubuntu 1604:
cp ca.pem /usr/share/ca-certificates/harbor-ca.crt
echo harbor-ca.crt >> /etc/ca-certificates.conf
update-ca-certificates

CentOS 7:
cp ca.pem /etc/pki/ca-trust/source/anchors/harbor-ca.crt
update-ca-trust
上述配置完成后,重启 containerd 即可 systemctl restart containerd

8.harbor的备份:
/data挂载独立SSD

第14关k8s架构师课程之业务Prometheus监控实战一

原创2021-03-28 20:30·博哥爱运维

服务监控

在传统服务里面,我们通常会到zabbix、open-falcon、netdata来做服务的监控,但对于目前主流的K8s平台来说,由于服务pod会被调度到任何机器上运行,且pod挂掉后会被自动重启,并且我们也需要有更好的自动服务发现功能来实现服务报警的自动接入,实现更高效的运维报警,这里我们需要用到K8s的监控实现Prometheus,它是基于Google内部监控系统的开源实现。

第14关k8s架构师课程之业务Prometheus监控实战一

Prometheus Operator的工作原理

在Kubernetes中我们使用Deployment、DamenSet,StatefulSet来管理应用Workload,使用Service,Ingress来管理应用的访问方式,使用ConfigMap和Secret来管理应用配置。我们在集群中对这些资源的创建,更新,删除的动作都会被转换为事件(Event),Kubernetes的Controller Manager负责监听这些事件并触发相应的任务来满足用户的期望。这种方式我们成为声明式,用户只需要关心应用程序的最终状态,其它的都通过Kubernetes来帮助我们完成,通过这种方式可以大大简化应用的配置管理复杂度。

实战操作篇一

在K8s集群中部署Prometheus Operator

我们这里用prometheus-operator来安装整套prometheus服务,建议直接用master分支即可,这也是官方所推荐的荐的

https://github.com/prometheus-operator/kube-prometheus

开始安装

安装包和离线镜像包下载

https://cloud.189.cn/t/bM7f2aANnMVb (访问码:0nsj)

1. 解压下载的代码包---node1
cd /mnt/
unzip kube-prometheus-master.zip
rm -f kube-prometheus-master.zip && cd kube-prometheus-master

2. 每个节点导入镜像包离线镜像包都导入
docker load -i xxx.tar
这里建议先看下有哪些镜像,便于在下载镜像快的节点上先收集好所有需要的离线docker镜像
# find ./ -type f |xargs grep 'image: '|sort|uniq|awk '{print $3}'|grep ^[a-zA-Z]|grep -Evw 'error|kubeRbacProxy'|sort -rn|uniq
quay.io/prometheus/prometheus:v2.22.1
quay.io/prometheus-operator/prometheus-operator:v0.43.2
quay.io/prometheus/node-exporter:v1.0.1
quay.io/prometheus/alertmanager:v0.21.0
quay.io/fabxc/prometheus_demo_service
quay.io/coreos/kube-state-metrics:v1.9.7
quay.io/brancz/kube-rbac-proxy:v0.8.0
grafana/grafana:7.3.4
gcr.io/google_containers/metrics-server-amd64:v0.2.01
directxman12/k8s-prometheus-adapter:v0.8.2

在测试的几个node上把这些离线镜像包都导入 docker load -i xxx.tar

3. 开始创建所有服务--node01
cd /mnt/kube-prometheus-master
kubectl create -f manifests/setup
kubectl create -f manifests/
过一会查看创建结果:
kubectl -n monitoring get all
确认每一个都正常

# 附:清空上面部署的prometheus所有服务:
kubectl delete --ignore-not-found=true -f manifests/ -f manifests/setup
2.访问Prometheus的界面

生产小技巧,强制删除删不掉的pods
kubectl delete pod node-exporter-nglzp --grace-period=0 --force -n monitoring

2.1修改下prometheus UI的service模式,便于我们外网访问
kubectl -n monitoring patch svc prometheus-k8s -p '{"spec":{"type":"NodePort"}}'

2.2查看svc和端口、通过浏览器访问外网端口
kubectl -n monitoring get svc prometheus-k8s

2.3点击上方菜单栏Status — Targets ,我们发现kube-controller-manager和kube-scheduler未发现
opreator部署都会有这个问题
注:只要不全不是【::】就得改、如果发现下面不是监控的127.0.0.1,并且通过下面地址可以获取metric指标输出,那么这个改IP这一步可以不用操作
curl 10.0.1.201:10251/metrics curl 10.0.1.201:10252/metrics

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NYtX6xSb-1661331702304)(C:\Users\123\AppData\Roaming\Typora\typora-user-images\image-20220814235414912.png)]

3.解决kube-controller-manager和kube-scheduler未发现的问题
查看两服务监听的IP
ss -tlnp|egrep 'controller|schedule'

4.有几个master就改几个、如果大家前面是按我设计的4台NODE节点,其中2台作master的话,那就在这2台master上把systemcd配置改一下
所有master分别改ip
sed -ri 's+172.24.75.117+0.0.0.0+g' /etc/systemd/system/kube-controller-manager.service 
sed -ri 's+172.24.75.117+0.0.0.0+g' /etc/systemd/system/kube-scheduler.service
systemctl daemon-reload
systemctl restart kube-controller-manager.service
systemctl restart kube-scheduler.service 

5.xiu该完毕再次尝试访问\\OK  通了、、但是还没完全通、看第6步
curl 172.24.75.119:10251/metrics
curl 172.24.75.119:10252/metrics

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-C96YoGZN-1661331702305)(C:\Users\123\AppData\Roaming\Typora\typora-user-images\image-20220814235830159.png)]

6.6.然后因为K8s的这两上核心组件我们是以二进制形式部署的,为了能让K8s上的prometheus能发现,我们还需要来创建相应的service和endpoints来将其关联起来
注意:我们需要将endpoints里面的NODE IP换成我们实际情况的
将上面的yaml配置保存为repair-prometheus.yaml,然后创建它---node01
vi repair-prometheus.yaml
kubectl apply -f repair-prometheus.yaml
创建完确认下
kubectl -n kube-system get svc |egrep 'controller|scheduler'


apiVersion: v1
kind: Service
metadata:
  namespace: kube-system
  name: kube-controller-manager
  labels:
    k8s-app: kube-controller-manager
spec:
  type: ClusterIP
  clusterIP: None
  ports:
  - name: http-metrics
    port: 10252
    targetPort: 10252
    protocol: TCP

---
apiVersion: v1
kind: Endpoints
metadata:
  labels:
    k8s-app: kube-controller-manager
  name: kube-controller-manager
  namespace: kube-system
subsets:
- addresses:
  - ip: 172.24.75.119
  - ip: 172.24.75.118
  - ip: 172.24.75.117
  ports:
  - name: http-metrics
    port: 10252
    protocol: TCP

---

apiVersion: v1
kind: Service
metadata:
  namespace: kube-system
  name: kube-scheduler
  labels:
    k8s-app: kube-scheduler
spec:
  type: ClusterIP
  clusterIP: None
  ports:
  - name: http-metrics
    port: 10251
    targetPort: 10251
    protocol: TCP

---
apiVersion: v1
kind: Endpoints
metadata:
  labels:
    k8s-app: kube-scheduler
  name: kube-scheduler
  namespace: kube-system
subsets:
- addresses:
  - ip: 172.24.75.119
  - ip: 172.24.75.118
  - ip: 172.24.75.117
  ports:
  - name: http-metrics
    port: 10251
    protocol: TCP
    
7.记得还要修改一个地方
kubectl -n monitoring edit servicemonitors.monitoring.coreos.com kube-scheduler 
# 将下面两个地方的https换成http
    port: https-metrics
    scheme: https

kubectl -n monitoring edit servicemonitors.monitoring.coreos.com kube-controller-manager
# 将下面两个地方的https换成http
    port: https-metrics
    scheme: https
    
 8.然后再返回prometheus UI处,耐心等待几分钟,就能看到已经被发现了、、、完美解决
 kubectl get svc -n monitoring 
	http://101.133.227.28:30838/targets

成功截图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HqQZnCji-1661331702306)(C:\Users\123\AppData\Roaming\Typora\typora-user-images\image-20220815002453048.png)]

第14关k8s架构师课程之业务Prometheus监控实战二

原创2021-03-29 23:59·博哥爱运维

使用prometheus来监控ingress-nginx

大家好,我是博哥爱运维。我们前面部署过ingress-nginx,这个是整个K8s上所有服务的流量入口组件很关键,因此把它的metrics指标收集到prometheus来做好相关监控至关重要,因为前面ingress-nginx服务是以daemonset形式部署的,并且映射了自己的端口到宿主机上,那么我可以直接用pod运行NODE上的IP来看下metrics

curl 10.0.1.201:10254/metrics
1.创建 servicemonitor配置让prometheus能发现ingress-nginx的metrics
# vi servicemonitor.yaml
kubectl apply -f servicemonitor.yaml
kubectl -n ingress-nginx get servicemonitors.monitoring.coreos.com 
如果指标没收集上来、看下报错、指标一直没收集上来,看看proemtheus服务的日志,发现报错如下:
kubectl -n monitoring logs prometheus-k8s-0 -c prometheus |grep error


apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  labels:
    app: ingress-nginx
  name: nginx-ingress-scraping
  namespace: ingress-nginx
spec:
  endpoints:
  - interval: 30s
    path: /metrics
    port: metrics
  jobLabel: app
  namespaceSelector:
    matchNames:
    - ingress-nginx
  selector:
    matchLabels:
      app: ingress-nginx
2.指标一直没收集上来,看看proemtheus服务的日志,发现报错如下:一堆error
kubectl -n monitoring logs prometheus-k8s-0 -c prometheus |grep error

3.需要修改prometheus的clusterrole#
###从rules开始复制!!
 kubectl edit clusterrole prometheus-k8s
4.再到prometheus UI上看下,发现已经有了
 
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: prometheus-k8s
####从rules开始复制!!!
rules:
- apiGroups:
  - ""
  resources:
  - nodes
  - services
  - endpoints
  - pods
  - nodes/proxy
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - configmaps
  - nodes/metrics
  verbs:
  - get
- nonResourceURLs:
  - /metrics
  verbs:
  - get

使用Prometheus来监控二进制部署的ETCD集群

作为K8s所有资源存储的关键服务ETCD,我们也有必要把它给监控起来,正好借这个机会,完整的演示一次利用Prometheus来监控非K8s集群服务的步骤

在前面部署K8s集群的时候,我们是用二进制的方式部署的ETCD集群,并且利用自签证书来配置访问ETCD,正如前面所说,现在关键的服务基本都会留有指标metrics接口支持prometheus的监控,利用下面命令,我们可以看到ETCD都暴露出了哪些监控指标出来

1.查看ETCD是默认暴露---node1
curl --cacert /etc/kubernetes/ssl/ca.pem --cert /etc/kubeasz/clusters/testbobo/ssl/etcd.pem  --key /etc/kubeasz/clusters/testbobo/ssl/etcd-key.pem https://172.24.75.117:2379/metrics
1

##改版之后的位置在这:
ll /etc/kubeasz/clusters/testbobo/ssl/etcd.pem

2.进行配置使ETCD能被prometheus发现并监控
2.1首先把ETCD的证书创建为secret----记得修改为自己的集群名字
kubectl -n monitoring create secret generic etcd-certs --from-file=/etc/kubeasz/clusters/test/ssl/etcd.pem   --from-file=//etc/kubeasz/clusters/test/ssl/etcd-key.pem   --from-file=/etc/kubernetes/ssl/ca.pem
2.2 接着在prometheus里面引用这个secrets
kubectl -n monitoring edit prometheus k8s
spec:
##加中间两个在最后,version:v2.22.1后面
...
  secrets:
  - etcd-certs
2.3保存退出后,prometheus会自动重启服务pod以加载这个secret配置,过一会,我们进pod来查看下是不是已经加载到ETCD的证书了
kubectl -n monitoring exec -it prometheus-k8s-0 -c prometheus  -- sh 
###修改配置自动重启,所以多进去几次,这里没问题
/prometheus $ ls /etc/prometheus/secrets/etcd-certs/
ca.pem        etcd-key.pem  etcd.pem
3.接下来准备创建service、endpoints以及ServiceMonitor的yaml配置
注意替换下面的NODE节点IP为实际ETCD所在NODE内网IP
vi prometheus-etcd.yaml
kubectl apply -f prometheus-etcd.yaml 

4.过一会,就可以在prometheus UI上面看到ETCD集群被监控了

apiVersion: v1
kind: Service
metadata:
  name: etcd-k8s
  namespace: monitoring
  labels:
    k8s-app: etcd
spec:
  type: ClusterIP
  clusterIP: None
  ports:
  - name: api
    port: 2379
    protocol: TCP
---
apiVersion: v1
kind: Endpoints
metadata:
  name: etcd-k8s
  namespace: monitoring
  labels:
    k8s-app: etcd
subsets:
- addresses:
  - ip: 172.24.75.119
  - ip: 172.24.75.118
  - ip: 172.24.75.117
  ports:
  - name: api
    port: 2379
    protocol: TCP
---
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: etcd-k8s
  namespace: monitoring
  labels:
    k8s-app: etcd-k8s
spec:
  jobLabel: k8s-app
  endpoints:
  - port: api
    interval: 30s
    scheme: https
    tlsConfig:
      caFile: /etc/prometheus/secrets/etcd-certs/ca.pem
      certFile: /etc/prometheus/secrets/etcd-certs/etcd.pem
      keyFile: /etc/prometheus/secrets/etcd-certs/etcd-key.pem
      #use insecureSkipVerify only if you cannot use a Subject Alternative Name
      insecureSkipVerify: true 
  selector:
    matchLabels:
      k8s-app: etcd
  namespaceSelector:
    matchNames:
    - monitoring

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bef5UZXC-1661331702307)(C:\Users\123\AppData\Roaming\Typora\typora-user-images\image-20220815005649254.png)]

5.接下来我们用grafana来展示被监控的ETCD指标接下来我们用grafana来展示被监控的ETCD指标
5.1. 在grafana官网模板中心搜索etcd,下载这个json格式的模板文件
https://grafana.com/dashboards/3070

5.2.然后打开自己先部署的grafana首页,
kubectl get svc -n monitoring |grep gra

##初始密码admin
点击左边菜单栏四个小正方形方块HOME --- Manage
再点击右边 Import dashboard --- 
点击Upload .json File 按钮,上传上面下载好的json文件 etcd_rev3.json,
然后在prometheus选择数据来源
点击Import,即可显示etcd集群的图形监控信息

成功截图:

image-20220815010204737

第14关k8s架构师课`程之业务Prometheus监控实战三

原创2021-03-31 21:11·博哥爱运维

prometheus监控数据以及grafana配置持久化存储配置

大家好,我是博哥爱运维。这节实战课给大家讲解下如果配置prometheus以及grafana的数据持久化。

prometheus数据持久化配置

1.注意这下面的statefulset服务就是我们需要做数据持久化的地方
kubectl -n monitoring get statefulset,pod|grep prometheus-k8s
2.看下我们之前准备的StorageClass动态存储
kubectl get sc
root@node01 mnt]# kubectl get sc
NAME       PROVISIONER          RECLAIMPOLICY   VOLUMEBINDINGMODE   ALLOWVOLUMEEXPANSION   AGE
nfs-boge   nfs-provisioner-01   Retain          Immediate           false                  11h
3.准备prometheus持久化的pvc配置---加到version最后
kubectl -n monitoring edit prometheus k8s

spec:
......
#从storage开始加
  storage:
    volumeClaimTemplate:
      spec:
        accessModes: [ "ReadWriteOnce" ]
        storageClassName: "nfs-boge"
        #下面三行去掉不然新版本报错
        #selector:
         # matchLabels:
          #  app: my-example-prometheus
        resources:
          requests:
            storage: 1Gi
4.# 上面修改保存退出后,过一会我们查看下pvc创建情况,以及pod内的数据挂载情况
kubectl -n monitoring get pvc

[root@node01 mnt]# kubectl -n monitoring get pvc
NAME                                 STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS   AGE
prometheus-k8s-db-prometheus-k8s-0   Bound    pvc-71e2655a-a1dc-487d-8cfe-f29d02d3035e   1Gi        RWO            nfs-boge       101s
prometheus-k8s-db-prometheus-k8s-1   Bound    pvc-4326dac9-385b-4aa8-91b0-60a77b79e625   1Gi        RWO            nfs-boge       101s

5.# kubectl -n monitoring exec -it prometheus-k8s-0 -c prometheus -- sh
/prometheus $ df -Th
......
10.0.1.201:/nfs_dir/monitoring-prometheus-k8s-db-prometheus-k8s-0-pvc-055e6b11-31b7-4503-ba2b-4f292ba7bd06/prometheus-db
                     nfs4           97.7G      9.4G     88.2G  10% /prometheus

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PXa6Shjz-1661331702309)(C:\Users\123\AppData\Roaming\Typora\typora-user-images\image-20220815011507763.png)]

grafana配置持久化存储配置

1.保存pvc为grafana-pvc.yaml
vi grafana-pvc.yaml
#vi grafana-pvc.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: grafana
  namespace: monitoring
spec:
  storageClassName: nfs-boge
  accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 1Gi
      
# 开始创建pvc
kubectl apply -f grafana-pvc.yaml 
# 看下创建的pvc
kubectl -n monitoring get pvc
# 编辑grafana的deployment资源配置
kubectl -n monitoring edit deployments.apps grafana 
# 旧的配置
      volumes:
      - emptyDir: {}
        name: grafana-storage
# 替换成新的配置---131行
      volumes:
      - name: grafana-storage
        persistentVolumeClaim:
          claimName: grafana
 
# 同时加入下面的env环境变量,将登陆密码进行固定修改
    spec:
      containers:
      ......
      #env和port对齐---插到47行
        env:
        - name: GF_SECURITY_ADMIN_USER
          value: admin
        - name: GF_SECURITY_ADMIN_PASSWORD
          value: admin321

# 过一会,等grafana重启完成后,用上面的新密码进行登陆
kubectl -n monitoring get pod -w|grep grafana
grafana-5698bf94f4-prbr2               0/1     Running   0          3s
grafana-5698bf94f4-prbr2               1/1     Running   0          4s

# 因为先前的数据并未持久化,所以会发现先导入的ETCD模板已消失,这时重新再导入一次,后面重启也不会丢了



第14关k8s架构师课程之业务Prometheus监控实战四

原创2021-04-01 20:35·博哥爱运维

prometheus发送报警

大家好,我是博哥爱运维所以目前在生产中用得更为多的是基于webhook来转发报警内容到企业中用的聊天工具中,比如钉钉、企业微信、飞书等。

prometheus的报警组件是Alertmanager,它支持自定义webhook的方式来接受它发出的报警,它发出的日志json字段比较多,我们需要根据需要接收的app来做相应的日志清洗转发

这里博哥将用golang结合Gin网络框架来编写一个日志清洗转发工具,分别对这几种常用的报警方式作详细地说明及实战

下载boge-webhook.zip

https://cloud.189.cn/t/B3EFZvnuMvuu (访问码:h1wx)

首先看下报警规则及报警发送配置是什么样的

prometheus-operator的规则非常齐全,基本属于开箱即用类型,大家可以根据日常收到的报警,对里面的rules报警规则作针对性的调整,比如把报警观察时长缩短一点等

1.第一步上传,上传完成后1.1看看就行,直接看第二步---node1
上传webhook到/mnt
ll /mnt/boge-webhook

1.2注意事先在配置文件 alertmanager.yaml 里面编辑好收件人等信息 ,再执行下面的命令
注意配置收件人的命名空间
##钉钉、飞书、微信
receivers:
- name: 'webhook'
  webhook_configs:
  #										namespace(如果在default就删掉后面的)
  #					修改url后要当重新删除alert   pods
  - url: 'http://alertmanaer-dingtalk-svc.kube-system//b01bdc063/boge/getjson'
  #									svc.default.svc
    send_resolved: true

##看一下log有没有报错##看一下log有没有报错
kubectl logs alertmanager-main-0 -c alertmanager -n monitoring

kubectl logs alertmanaer-dingtalk-dp-84768f8464-vnpg8 -n monitoring

[GIN-debug] GET    /status                   --> mycli/libs.MyWebServer.func1 (3 handlers)
[GIN-debug] POST   /b01bdc063/boge/getjson   --> mycli/libs.MyWebServer.func2 (3 handlers)
[GIN-debug] POST   /7332f19/prometheus/dingtalk --> mycli/libs.MyWebServer.func3 (3 handlers)
[GIN-debug] POST   /1bdc0637/prometheus/feishu --> mycli/libs.MyWebServer.func4 (3 handlers)
[GIN-debug] POST   /5e00fc1a/prometheus/weixin --> mycli/libs.MyWebServer.func5 (3 handlers


1.1监控报警规划修改文件位置(看一下,现在不用真的改)
find / -name prometheus-rules.yaml
/mnt/kube-prometheus-master/manifests/prometheus-rules.yaml
修改完成记得更新   kubectl apply -f ./manifests/prometheus/prometheus-rules.yaml
# 通过这里可以获取需要创建的报警配置secret名称
# kubectl -n monitoring edit statefulsets.apps alertmanager-main
...
      volumes:
      - name: config-volume
        secret:
          defaultMode: 420
          secretName: alertmanager-main
...
###


2.1删除原来的---node1-----每更新一次alertmanager.yaml,就要重新执行2.1----2.1、、或者重启pods
kubectl delete secrets alertmanager-main -n monitoring 

2.2执行新的---在webhook文件夹
kubectl create secret generic  alertmanager-main --from-file=alertmanager.yaml -n monitoring
secret/alertmanager-main created
##看一下log有没有报错##看一下log有没有报错
kubectl logs alertmanager-main-0 -c alertmanager -n monitoring 

3.构建根据DockerFile镜像----记得改仓库名字、
docker build -t harbor.boge.com/product/alertmanaer-webhook:1.0 .

4.推送镜像
4.1先登录
docker login
4.2去服务器创建哥私有镜像仓库
4.3如果这里报错,去node04看看nginx的端口是不是被haproxy占用了ss -luntp|grep 443
如果被占用systemctl stop haproxy   然后在node04  cd /data/harbor   ./install.sh重装harbor不会覆盖原来的数据-----------解决问题的感觉太爽了然后就可以访问了---提示查看svc
47.103.13.111/harbor/
回到node01
cd /mnt/boge-webhook
docker push harbor.boge.com/product/alertmanaer-webhook:1.0

5.vim alertmanaer-webhook.yaml-----也可以配置微信钉钉token
	如果要拉私有仓库先在imagePullSecret建立密钥,在他的上一行有指定命令
	配置钉钉地址/微信信息token
	报警过滤把 
	imagePullSecrets:
      - name: boge-secret
放到最后

6.所有节点做域名解析
echo "172.24.75.115 harbor.boge.com" >> /etc/hosts

7.创建secret命令格式
kubectl create secret docker-registry boge-secret --docker-server=harbor.boge.com --docker-username=admin --docker-password=boge666 --docker-email=[email protected]

kubectl apply -f alertmanaer-webhook.yamls

8.在转发查看日志
kubectl logs alertmanaer-dingtalk-dp-84768f8464-ktzx7

##看一下log有没有报错##看一下log有没有报错
kubectl logs alertmanager-main-0 -c alertmanager -n monitoring 
每次修改alertmanger文件,都要重新创建sercert,删除main-pod重新生成

成功的截图,不报错

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JA7gtSL4-1661331702310)(C:\Users\qingtian\AppData\Roaming\Typora\typora-user-images\image-20220815163618860.png)]

附: 监控其他服务的prometheus规则配置

https://github.com/samber/awesome-prometheus-alerts

https://github.com/samber/awesome-prometheus-alerts

第15关 k8s架构师课程基于gitlab的CICD自动化一

原创2021-04-06 20:17·博哥爱运维

1.二进制安装K8S

2.K8S的增加节点、减少节点、升级K8S版本

./ezctl del-node test nodeip

./ezctl add-node test nodeip

3.安装ingress-nginx-controller

4.安装harbor–pg—gitlib—runner—dind

5.准备生产项目 py go

6.设计自动化CI/CDl流程

7.开始实施CICD自动化

第15关 k8s架构师课程基于gitlab的CICD自动化二

原创2021-04-06 20:17·博哥爱运维

升级版本、增加删除节点、版本升级https://www.toutiao.com/video/6947312140566921736/?from_scene=all&log_from=5a724f0a3dcb2_1660324551795[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hSZ6nbZt-1661331702311)(C:\Users\123\AppData\Roaming\Typora\typora-user-images\image-20220813084537187.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EB0CC4V9-1661331702312)(C:\Users\123\AppData\Roaming\Typora\typora-user-images\image-20220813084735944.png)]

大家好,我是博哥爱运维。这节课我们先来部署gitlab私有代码仓库所需要的数据库postgresql和redis。

需要注意的是,如果大家的nfs-server的地址和挂载目录不是按博哥前面课程讲得来定义的话,那么下面的yaml配置中需要记得替换。

部署部署基础设施postgresql

# ------------------------------------------------
#  mkdir -p /nfs_dir/{gitlab_etc_ver130806,gitlab_log_ver130806,gitlab_opt_ver130806,gitlab_postgresql_data_ver130806}
#  kubectl create namespace gitlab-ver130806
#  kubectl -n gitlab-ver130806 apply -f 3postgres.yaml
#  kubectl -n gitlab-ver130806 apply -f 4redis.yaml
#  kubectl -n gitlab-ver130806 apply -f 5gitlab.yaml
#  kubectl -n gitlab-ver130806 apply -f 6gitlab-tls.yaml
# ------------------------------------------------

# pv----持久卷目录名字想自己管理就手动建PV----node01----nfs目录
mkdir -p /nfs_dir/{gitlab_etc_ver130806,gitlab_log_ver130806,gitlab_opt_ver130806,gitlab_postgresql_data_ver130806}
1.kubectl create namespace gitlab-ver130806
2.kubectl -n gitlab-ver130806 apply -f 3postgres.yaml

3.进入node4
cd /data/harbor/
查看docker-compose状态:
docker-compose ps
如果状态有exit
4.重启docker-compose
docker-compose down -v
docker-compose up -d



# pv
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: gitlab-postgresql-data-ver130806
  labels:
    type: gitlab-postgresql-data-ver130806
spec:
  capacity:
    storage: 10Gi
  accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Retain
  storageClassName: nfs
  nfs:
    path: /nfs_dir/gitlab_postgresql_data_ver130806
    server: 10.0.1.201

# pvc
---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: gitlab-postgresql-data-ver130806-pvc
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 10Gi
  storageClassName: nfs
  selector:
    matchLabels:
      type: gitlab-postgresql-data-ver130806
---
apiVersion: v1
kind: Service
metadata:
  name: postgresql
  labels:
    app: gitlab
    tier: postgreSQL
spec:
  ports:
    - port: 5432
  selector:
    app: gitlab
    tier: postgreSQL

---

apiVersion: apps/v1
kind: Deployment
metadata:
  name: postgresql
  labels:
    app: gitlab
    tier: postgreSQL
spec:
  replicas: 1
  selector:
    matchLabels:
      app: gitlab
      tier: postgreSQL
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: gitlab
        tier: postgreSQL
    spec:
      #nodeSelector:
      #  gee/disk: "500g"
      containers:
        - image: postgres:12.6-alpine
        #- image: harbor.boge.com/library/postgres:12.6-alpine
          name: postgresql
          env:
            - name: POSTGRES_USER
              value: gitlab
            - name: POSTGRES_DB
              value: gitlabhq_production
            - name: POSTGRES_PASSWORD
              value: bogeusepg
            - name: TZ
              value: Asia/Shanghai
          ports:
            - containerPort: 5432
              name: postgresql
          livenessProbe:
            exec:
              command:
              - sh
              - -c
              - exec pg_isready -U gitlab -h 127.0.0.1 -p 5432 -d gitlabhq_production
            initialDelaySeconds: 110
            timeoutSeconds: 5
            failureThreshold: 6
          readinessProbe:
            exec:
              command:
              - sh
              - -c
              - exec pg_isready -U gitlab -h 127.0.0.1 -p 5432 -d gitlabhq_production
            initialDelaySeconds: 20
            timeoutSeconds: 3
            periodSeconds: 5
#          resources:
#            requests:
#              cpu: 100m
#              memory: 512Mi
#            limits:
#              cpu: "1"
#              memory: 1Gi
          volumeMounts:
            - name: postgresql
              mountPath: /var/lib/postgresql/data
      volumes:
        - name: postgresql
          persistentVolumeClaim:
            claimName: gitlab-postgresql-data-ver130806-pvc

基础配置部署redis

1.----节点node01
vi 4redis.yaml
2.kubectl -n gitlab-ver130806 apply -f 4redis.yaml


---
apiVersion: v1
kind: Service
metadata:
  name: redis
  labels:
    app: gitlab
    tier: backend
spec:
  ports:
    - port: 6379
      targetPort: 6379
  selector:
    app: gitlab
    tier: backend
---

apiVersion: apps/v1
kind: Deployment
metadata:
  name: redis
  labels:
    app: gitlab
    tier: backend
spec:
  replicas: 1
  selector:
    matchLabels:
      app: gitlab
      tier: backend
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: gitlab
        tier: backend
    spec:
      #nodeSelector:
      #  gee/disk: "500g"
      containers:
        - image: redis:6.2.0-alpine3.13
        #- image: harbor.boge.com/library/redis:6.2.0-alpine3.13
          name: redis
          command:
            - "redis-server"
          args:
            - "--requirepass"
            - "bogeuseredis"
#          resources:
#            requests:
#              cpu: "1"
#              memory: 2Gi
#            limits:
#              cpu: "1"
#              memory: 2Gi
          ports:
            - containerPort: 6379
              name: redis
          livenessProbe:
            exec:
              command:
              - sh
              - -c
              - "redis-cli ping"
            initialDelaySeconds: 30
            periodSeconds: 10
            timeoutSeconds: 5
            successThreshold: 1
            failureThreshold: 3
          readinessProbe:
            exec:
              command:
              - sh
              - -c
              - "redis-cli ping"
            initialDelaySeconds: 5
            periodSeconds: 10
            timeoutSeconds: 1
            successThreshold: 1
            failureThreshold: 3
      initContainers:
      - command:
        - /bin/sh
        - -c
        - |
          ulimit -n 65536
          mount -o remount rw /sys
          echo never > /sys/kernel/mm/transparent_hugepage/enabled
          mount -o remount rw /proc/sys
          echo 2000 > /proc/sys/net/core/somaxconn
          echo 1 > /proc/sys/vm/overcommit_memory
        image: registry.cn-beijing.aliyuncs.com/acs/busybox:v1.29.2
        imagePullPolicy: IfNotPresent
        name: init-redis
        resources: {}
        securityContext:
          privileged: true
          procMount: Default

第15关 k8s架构师课程基于gitlab的CICD自动化三

原创2021-04-07 21:36·博哥爱运维

大家好,我是博哥爱运维。这节课我们来开始部署gitlab服务。

配置部署gitlab主体服务

1.自己定制镜像----在生产中直接用---------先修改suource.list文件
如果博哥跑的dockerfile一直报错gpnp下载不了,就用这个自己修改的
FROM gitlab/gitlab-ce:13.8.6-ce.0

RUN rm /etc/apt/sources.list \
    && echo 'deb http://apt.postgresql.org/pub/repos/apt/ xenial-pgdg main' > /etc/apt/sources.list.d/pgdg.list
RUN wget https://www.postgresql.org/media/keys/ACCC4CF8.asc --no-check-certificate

RUN apt-key add ACCC4CF8.asc
COPY sources.list /etc/apt/sources.list

RUN apt-get update -yq && \
    apt-get install -y vim iproute2 net-tools iputils-ping curl wget software-properties-common unzip postgresql-client-12 && \
    rm -rf /var/cache/apt/archives/*

RUN ln -svf /usr/bin/pg_dump /opt/gitlab/embedded/bin/pg_dump


2.推送打包好的镜像到私有仓库harbor--------------格式一定要对不然永远传不上去
docker tag gitlab/gitlab-ce:13.8.6-ce.1 harbor.boge.com/library/gitlab-ce:13.8.6-ce.1



下面是博哥给的dockfile#Dockerfile
# 打包命令docker build -t gitlab/gitlab-ce:13.8.6-ce.1 .

FROM gitlab/gitlab-ce:13.8.6-ce.0

RUN rm /etc/apt/sources.list \
    && echo 'deb http://apt.postgresql.org/pub/repos/apt/ xenial-pgdg main' > /etc/apt/sources.list.d/pgdg.list \
    && wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | apt-key add -
COPY sources.list /etc/apt/sources.list

RUN apt-get update -yq && \
    apt-get install -y vim iproute2 net-tools iputils-ping curl wget software-properties-common unzip postgresql-client-12 && \
    rm -rf /var/cache/apt/archives/*

RUN ln -svf /usr/bin/pg_dump /opt/gitlab/embedded/bin/pg_dump

#---------------------------------------------------------------
# docker build -t gitlab/gitlab-ce:13.8.6-ce.1 .

2.配置阿里云加速
保存为sources.list文件、放到dockerfile文件同级别目录

deb http://mirrors.aliyun.com/ubuntu/ xenial main
deb-src http://mirrors.aliyun.com/ubuntu/ xenial main
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates main
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-updates main
deb http://mirrors.aliyun.com/ubuntu/ xenial universe
deb-src http://mirrors.aliyun.com/ubuntu/ xenial universe
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates universe
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-updates universe
deb http://mirrors.aliyun.com/ubuntu xenial-security main
deb-src http://mirrors.aliyun.com/ubuntu xenial-security main
deb http://mirrors.aliyun.com/ubuntu xenial-security universe
deb-src http://mirrors.aliyun.com/ubuntu xenial-security universe

#docker build -t gitlab/gitlab-ce:13.8.6-ce.1 .
3.开始部署-----最佳资源配置-----生产积累
# restore gitlab data command example:
1.gitlab数据库全备份命令
kubectl -n gitlab-ver130806 exec -it $(kubectl -n gitlab-ver130806 get pod|grep -v runner|grep gitlab|awk '{print $1}') -- gitlab-rake gitlab:backup:restore BACKUP=1602889879_2020_10_17_12.9.2

2.重新加载配置
kubectl -n gitlab-ver130806 exec -it $(kubectl -n gitlab-ver130806 get pod|grep -v runner|grep gitlab|awk '{print $1}') -- gitlab-ctl reconfigure

查看组件状态
3.kubectl -n gitlab-ver130806 exec -it $(kubectl -n gitlab-ver130806 get pod|grep -v runner|grep gitlab|awk '{print $1}') -- gitlab-ctl status

4.kubectl -n gitlab-ver130806 apply -f 5gitlab.yaml
# pv
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: gitlab-etc-ver130806
  labels:
    type: gitlab-etc-ver130806
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Retain
  storageClassName: nfs
  nfs:
    path: /nfs_dir/gitlab_etc_ver130806
    server: 172.24.75.119

# pvc
---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: gitlab-etc-ver130806-pvc
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi
  storageClassName: nfs
  selector:
    matchLabels:
      type: gitlab-etc-ver130806
# pv
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: gitlab-log-ver130806
  labels:
    type: gitlab-log-ver130806
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Retain
  storageClassName: nfs
  nfs:
    path: /nfs_dir/gitlab_log_ver130806
    server: 172.24.75.119

# pvc
---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: gitlab-log-ver130806-pvc
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi
  storageClassName: nfs
  selector:
    matchLabels:
      type: gitlab-log-ver130806

# pv
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: gitlab-opt-ver130806
  labels:
    type: gitlab-opt-ver130806
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Retain
  storageClassName: nfs
  nfs:
    path: /nfs_dir/gitlab_opt_ver130806
    server: 172.24.75.119

# pvc
---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: gitlab-opt-ver130806-pvc
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 1Gi
  storageClassName: nfs
  selector:
    matchLabels:
      type: gitlab-opt-ver130806
---
apiVersion: v1
kind: Service
metadata:
  name: gitlab
  labels:
    app: gitlab
    tier: frontend
spec:
  ports:
    - name: gitlab-ui
      port: 80
      protocol: TCP
      targetPort: 80
    - name: gitlab-ssh
      port: 22
      protocol: TCP
      targetPort: 22
  selector:
    app: gitlab
    tier: frontend
  type: NodePort
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: gitlab
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: gitlab-cb-ver130806
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: cluster-admin
subjects:
  - kind: ServiceAccount
    name: gitlab
    namespace: gitlab-ver130806
---

apiVersion: apps/v1
kind: Deployment
metadata:
  name: gitlab
  labels:
    app: gitlab
    tier: frontend
spec:
  replicas: 1
  selector:
    matchLabels:
      app: gitlab
      tier: frontend
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: gitlab
        tier: frontend
    spec:
      serviceAccountName: gitlab
      containers:
      #私有仓库地址tag格式别错了!!
      #前面Dockerfile的打包推送image是这样
 #docker tag gitlab/gitlab-ce:13.8.6-ce.1 harbor.boge.com/library/gitlab-ce:13.8.6-ce.1
        - image: harbor.boge.com/library/gitlab-ce:13.8.6-ce.1
        #不成功就换成公有的比如   15927561940/gitlab-ce:13.8.6-ce.1
        #自己推到github或者dockerhub
          name: gitlab
#          resources:
#            requests:
#              cpu: 400m
#              memory: 4Gi
#            limits:
#              cpu: "800m"
#              memory: 8Gi
          securityContext:
            privileged: true
          env:
            - name: TZ
              value: Asia/Shanghai
            - name: GITLAB_OMNIBUS_CONFIG
              value: |
                postgresql['enable'] = false
                gitlab_rails['db_username'] = "gitlab"
                gitlab_rails['db_password'] = "bogeusepg"
                gitlab_rails['db_host'] = "postgresql"
                gitlab_rails['db_port'] = "5432"
                gitlab_rails['db_database'] = "gitlabhq_production"
                gitlab_rails['db_adapter'] = 'postgresql'
                gitlab_rails['db_encoding'] = 'utf8'
                redis['enable'] = false
                gitlab_rails['redis_host'] = 'redis'
                gitlab_rails['redis_port'] = '6379'
                gitlab_rails['redis_password'] = 'bogeuseredis'
                gitlab_rails['gitlab_shell_ssh_port'] = 22
                external_url 'http://git.boge.com/'
                nginx['listen_port'] = 80
                nginx['listen_https'] = false
                #-------------------------------------------
                gitlab_rails['gitlab_email_enabled'] = true
                gitlab_rails['gitlab_email_from'] = '[email protected]'
                gitlab_rails['gitlab_email_display_name'] = 'boge'
                gitlab_rails['gitlab_email_reply_to'] = '[email protected]'
                gitlab_rails['gitlab_default_can_create_group'] = true
                gitlab_rails['gitlab_username_changing_enabled'] = true
                gitlab_rails['smtp_enable'] = true
                gitlab_rails['smtp_address'] = "smtp.exmail.qq.com"
                gitlab_rails['smtp_port'] = 465
                gitlab_rails['smtp_user_name'] = "[email protected]"
                gitlab_rails['smtp_password'] = "bogesendmail"
                gitlab_rails['smtp_domain'] = "exmail.qq.com"
                gitlab_rails['smtp_authentication'] = "login"
                gitlab_rails['smtp_enable_starttls_auto'] = true
                gitlab_rails['smtp_tls'] = true
                #-------------------------------------------
                # 关闭 promethues
                prometheus['enable'] = false
                # 关闭 grafana
                grafana['enable'] = false
                # 减少内存占用
                unicorn['worker_memory_limit_min'] = "200 * 1 << 20"
                unicorn['worker_memory_limit_max'] = "300 * 1 << 20"
                # 减少 sidekiq 的并发数
                sidekiq['concurrency'] = 16
                # 减少 postgresql 数据库缓存
                postgresql['shared_buffers'] = "256MB"
                # 减少 postgresql 数据库并发数量
                postgresql['max_connections'] = 8
                # 减少进程数   worker=CPU核数+1
                unicorn['worker_processes'] = 2
                nginx['worker_processes'] = 2
                puma['worker_processes'] = 2
                # puma['per_worker_max_memory_mb'] = 850
                # 保留3天备份的数据文件
                gitlab_rails['backup_keep_time'] = 259200
                #-------------------------------------------
          ports:
            - containerPort: 80
              name: gitlab
          livenessProbe:
            exec:
              command:
              - sh
              - -c
              - "curl -s http://127.0.0.1/-/health|grep -w 'GitLab OK'"
            initialDelaySeconds: 120
            periodSeconds: 10
            timeoutSeconds: 5
            successThreshold: 1
            failureThreshold: 3
          readinessProbe:
            exec:
              command:
              - sh
              - -c
              - "curl -s http://127.0.0.1/-/health|grep -w 'GitLab OK'"
            initialDelaySeconds: 120
            periodSeconds: 10
            timeoutSeconds: 5
            successThreshold: 1
            failureThreshold: 3
          volumeMounts:
            - mountPath: /etc/gitlab
              name: gitlab1
            - mountPath: /var/log/gitlab
              name: gitlab2
            - mountPath: /var/opt/gitlab
              name: gitlab3
            - mountPath: /etc/localtime
              name: tz-config

      volumes:
        - name: gitlab1
          persistentVolumeClaim:
            claimName: gitlab-etc-ver130806-pvc
        - name: gitlab2
          persistentVolumeClaim:
            claimName: gitlab-log-ver130806-pvc
        - name: gitlab3
          persistentVolumeClaim:
            claimName: gitlab-opt-ver130806-pvc
        - name: tz-config
          hostPath:
            path: /usr/share/zoneinfo/Asia/Shanghai

      securityContext:
        runAsUser: 0
        fsGroup: 0


#4.kubectl -n gitlab-ver130806 apply -f 5gitlab.yaml
5.配置好后确定pods都跑起来了-----注意namespace
6.kubectl get svc -n gitlab-ver130806 
通过svc外网访问

第15关k8s架构师课程之基于gitlab的CICD自动化四

原创2021-04-08 21:20·博哥爱运维

大家好,我是博哥爱运维。这节课我们来讲gitlab里面的runner,gitlab的CI/CD自动化,都是由gitlab下发指令,依靠runner这个组件去执行的,我们这里也是把runner运行在k8s上面。

runner按字面意思就是奔跑者的意思,它在整个自动化流程里面的角色也相当于一个外卖小哥,它接收gitlab下发的自动化指令,来去做相应的操作,从而实现整个CI/CD的效果。

的自动化指令,来去做相应的操作,从而实现整个CI/CD的效果。

部署gitlab-tls

1.先创建证书:---node01---生产是买域名
openssl genrsa -out tls.key 2048
openssl req -new -x509 -key tls.key -out tls.cert -days 360 -subj /CN=*.boge.com
kubectl -n gitlab-ver130806 create secret tls mytls --cert=tls.cert --key=tls.key
[root@node01 ~]# kubectl -n gitlab-ver130806 create secret tls mytls --cert=tls.cert --key=tls.key
secret/mytls created


2.开始部署ingress:
vi 6gitlab-tls.yaml

kubectl -n gitlab-ver130806 apply -f 6gitlab-tls.yaml

## https://kubernetes.io/docs/concepts/services-networking/ingress/
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: gitlab
  annotations:
  #是否强制跳转到https   308重定向----上传文件大小
    nginx.ingress.kubernetes.io/force-ssl-redirect: "false"
    nginx.ingress.kubernetes.io/proxy-body-size: "20m"
spec:
  tls:
  - hosts:
    - git.boge.com
    secretName: mytls
  rules:
  #这里就是ingress
  - host: git.boge.com
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: gitlab
            port:
              number: 80

---

3。自定义域名绑定本地hosts----所有节点
echo "172.24.75.145 git.boge.com" >> /etc/hosts

的自动化指令,来去做相应的操作,从而实现整个CI/CD的效果。

部署gitlab-runner

1.docker
1.mkdir -p /nfs_dir/{gitlab-runner1-ver130806-docker,gitlab-runner2-ver130806-share}
2. vi 7gitlab-runner.yaml
3.kubectl apply -f 7gitlab-runner.yaml -n gitlab-ver130806 

kubectl get pods -n gitlab-ver130806 
4.kubectl exec -it gitlab-runner1-ver130806-docker-7596bf755c-ttvhj -n gitlab-ver130806 -- bash

2.# pv
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: gitlab-runner1-ver130806-docker
  labels:
    type: gitlab-runner1-ver130806-docker
spec:
  capacity:
    storage: 0.1Gi
  accessModes:
    - ReadWriteMany
  persistentVolumeReclaimPolicy: Retain
  storageClassName: nfs
  nfs:
    path: /nfs_dir/gitlab-runner1-ver130806-docker
    server: 172.24.75.117

# pvc
---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: gitlab-runner1-ver130806-docker
  namespace: gitlab-ver130806
spec:
  accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 0.1Gi
  storageClassName: nfs
  selector:
    matchLabels:
      type: gitlab-runner1-ver130806-docker


---
# https://docs.gitlab.com/runner/executors
#可接受多少个
#concurrent = 30
#check_interval = 0

#[session_server]
#  session_timeout = 1800

#[[runners]]
#  name = "gitlab-runner1-ver130806-docker"
#  url = "http://git.boge.com"
#  token = "xxxxxxxxxxxxxxxxxxxxxx"
#  executor = "kubernetes"
#  [runners.kubernetes]
#    namespace = "gitlab-ver130806"
#    image = "docker:stable"
#    helper_image = "gitlab/gitlab-runner-helper:x86_64-9fc34d48-pwsh"
#    privileged = true
#    [[runners.kubernetes.volumes.pvc]]
#      name = "gitlab-runner1-ver130806-docker"
#      mount_path = "/mnt"

---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: gitlab-runner1-ver130806-docker
  namespace: gitlab-ver130806
spec:
  replicas: 1
  selector:
    matchLabels:
      name: gitlab-runner1-ver130806-docker
  template:
    metadata:
      labels:
        name: gitlab-runner1-ver130806-docker
    spec:
      hostAliases:
      #内部地址,填gitlab的svc地址
      #在这找kubectl get svc -n gitlab-ver130806 ,下面share还有个地方也要改成这个
      - ip: "10.68.140.109"
        hostnames:
        - "git.boge.com"
      serviceAccountName: gitlab
      containers:
      - args:
        - run
        image: gitlab/gitlab-runner:v13.10.0
        name: gitlab-runner1-ver130806-docker
        volumeMounts:
        - mountPath: /etc/gitlab-runner
          name: config
        - mountPath: /etc/ssl/certs
          name: cacerts
          readOnly: true
      restartPolicy: Always
      volumes:
      - persistentVolumeClaim:
          claimName: gitlab-runner1-ver130806-docker
        name: config
      - hostPath:
          path: /usr/share/ca-certificates/mozilla
        name: cacerts
333.把runner注册到gitlib
# gitlab-ci-multi-runner register
#进入runner里面去然后注册
1.kubectl exec -it gitlab-runner1-ver130806-docker-7596bf755c-ttvhj -n gitlab-ver130806 -- bash
2.容器内#输入命令
gitlab-ci-multi-runner register
复制仓库地址
设置,扳手、管理员、runner\token
按照下面格式修改以后,删除pods让他自动重启
 kubectl delete gitlab-runner1-ver130806-docker-7596bf755c-ttvhj -n gitlab-ver130806

3.配置好后进入gitlab网页刷新runner\\\发现加载进去了
容器内部也可以看cat /etc/gitlab-runner/config.toml 


4.新开窗口、找到gitlab的svc,外网访问
kubectl get svc -n gitlab-ver130806

5.容器内编辑配置发现没命令
去容器外挂载目录编辑---看到已经被挂载
			cd /nfs_dir/gitlab-runner1-ver130806-docker
			vim config.toml

格式:
# https://docs.gitlab.com/runner/executors
#可接受多少个
#concurrent = 30
#check_interval = 0
#格式:
#[session_server]
#  session_timeout = 1800
#格式:
#[[runners]]
#  name = "gitlab-runner1-ver130806-docker"
#  url = "http://git.boge.com"
#  token = "xxxxxxxxxxxxxxxxxxxxxx"
#  executor = "kubernetes"
#  [runners.kubernetes]
   namespace = "gitlab-ver130806"  #补到左边
   image = "docker:stable"
   helper_image = "gitlab/gitlab-runner-helper:x86_64-9fc34d48-pwsh"
   privileged = true

6.改完以后重启pod--runner
kubectl delete pods gitlab-runner1-ver130806-docker-665bddc4d4-8bdtz -n gitlab-ver130806

7.看一下日志:
kubectl logs gitlab-runner1-ver130806-docker-665bddc4d4-jdglv  -n gitlab-ver130806
没报错就行

8.回到gitlab网页点击编辑一下、只勾选第一个、保存、runner变成shared可用绿色

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TfETNqHI-1661331702313)(C:\Users\123\AppData\Roaming\Typora\typora-user-images\image-20220816163356450.png)]

1.运行runner2=----share共享型share共享型,先执行下面的yaml文件、记得改ip
vi 8runner2.yaml
\\也要进到容器注册
2.kubectl exec -it gitlab-runner2-ver130806-share-bf884b794-gwqs6  -n gitlab-ver130806 -- /bin/bash

2.运行gitlab-ci-multi-runner register
同样进入gitlab,进入runner拿到token、输入标签

3.修改配置:
			cd /nfs_dir/gitlab-runner2-ver130806-docker
			vim config.toml
			也是和runner1一样的改
4.改完之后重启runner2的pods\\重启pods
kubectl delete pods gitlab-runner2-ver130806-share-bf884b794-gwqs6 -n gitlab-ver130806
3.刷线gitlab网页,看到runner2出来

钩1、3
#                   Active  √ Paused Runners don't accept new jobs
#                Protected     This runner will only run on pipelines triggered on protected branches
#        Run untagged jobs  √ Indicates whether this runner can pick jobs without tags
# Lock to current projects     When a runner is locked, it cannot be assigned to other projects

# pv
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: gitlab-runner2-ver130806-share
  labels:
    type: gitlab-runner2-ver130806-share
spec:
  capacity:
    storage: 0.1Gi
  accessModes:
    - ReadWriteMany
  persistentVolumeReclaimPolicy: Retain
  storageClassName: nfs
  nfs:
    path: /nfs_dir/gitlab-runner2-ver130806-share
    server: 172.24.75.117

# pvc
---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: gitlab-runner2-ver130806-share
  namespace: gitlab-ver130806
spec:
  accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 0.1Gi
  storageClassName: nfs
  selector:
    matchLabels:
      type: gitlab-runner2-ver130806-share


---
# https://docs.gitlab.com/runner/executors

#concurrent = 30
#check_interval = 0

#[session_server]
#  session_timeout = 1800

#[[runners]]
#  name = "gitlab-runner2-ver130806-share"
#  url = "http://git.boge.com"
#  token = "xxxxxxxxxxxxxxxx"
#  executor = "kubernetes"
#  [runners.kubernetes]
    namespace = "gitlab-ver130806"
    image = "registry.cn-beijing.aliyuncs.com/acs/busybox/busybox:v1.29.2"
    helper_image = "gitlab/gitlab-runner-helper:x86_64-9fc34d48-pwsh"
    privileged = false
    [[runners.kubernetes.volumes.pvc]]
      name = "gitlab-runner2-v1230-share"
      mount_path = "/mnt"

---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: gitlab-runner2-ver130806-share
  namespace: gitlab-ver130806
spec:
  replicas: 1
  selector:
    matchLabels:
      name: gitlab-runner2-ver130806-share
  template:
    metadata:
      labels:
        name: gitlab-runner2-ver130806-share
    spec:
      hostAliases:
      #改这里
      #内部地址,填gitlab的svc地址
      #在这找kubectl get svc -n gitlab-ver130806 ,下面share还有个地方也要改成这个
      - ip: "10.68.140.109"
        hostnames:
        - "git.boge.com"
      serviceAccountName: gitlab
      containers:
      - args:
        - run
        image: gitlab/gitlab-runner:v13.10.0
        name: gitlab-runner2-ver130806-share
        volumeMounts:
        - mountPath: /etc/gitlab-runner
          name: config
        - mountPath: /etc/ssl/certs
          name: cacerts
          readOnly: true
      restartPolicy: Always
      volumes:
      - persistentVolumeClaim:
          claimName: gitlab-runner2-ver130806-share
        name: config
      - hostPath:
          path: /usr/share/ca-certificates/mozilla
        name: cacerts

第15关k8s架构师课程之基于gitlab的CICD自动化五

原创2021-04-09 22:47·博哥爱运维

大家好,我是博哥爱运维。这节课我们继续来配置gitlab相关的服务。

增加gitlab在k8s的内部解析

云平台必做

为什么这么做呢,博哥这里总结了两点原因:

  1. 优化gitlab网络通信,对于runner要调用gitlab服务来说,直接走内部地址速度更快
  2. 如果是在用阿里云的同学,采用在k8s上部署gitlab的话,那么k8s内部服务比如runner是不能通过同集群前面的公网入口SLB来请求访问的,这里阿里云自身网络架构原因,这个时候我们只需要做如下配置即可完美解决
  3. 加一个coreDNS强制解析、强制先走内部地址
1.增加gitlab在k8s的内部解析
# kubectl -n kube-system get configmaps coredns  -o yaml
kubectl -n kube-system edit configmaps coredns
改完后重启pods
kubectl get pods -n kube-system |grep coredns
kubectl delete pods coredns-5787695b7f-l7v2b -n kube-system

进入容器\\\
可ping git.boge.com  通(gitlab service  ip)

apiVersion: v1
data:
  Corefile: |
    .:53 {
        errors
        health
        ready
        #从log开始加进去
        log
        rewrite stop {
        #				域名		server名称.namespace名称.后缀
          name regex git.boge.com gitlab.gitlab-ver130806.svc.cluster.local
          answer name gitlab.gitlab-ver130806.svc.cluster.local git.boge.com
        }

        kubernetes cluster.local in-addr.arpa ip6.arpa {

          pods verified
          fallthrough in-addr.arpa ip6.arpa
        }
        autopath @kubernetes
        prometheus :9153
        forward . /etc/resolv.conf
        cache 30
        loop
        reload
        loadbalance
    }
kind: ConfigMap
metadata:
  name: coredns
  namespace: kube-system
2.增加ssh端口转发----node-4
我们要保持所有开发人员能使用默认的22端口来通过ssh拉取代码,那么就需要做如下端口转发配置
# 注意配置此转发前,需要将对应NODE的本身ssh连接端口作一下修改,以防后面登陆不了该机器----node-4
2.1查看22端口
[root@node01 gitlab-runner2-ver130806-share]# kubectl get svc -n gitlab-ver130806 
NAME         TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)                     AGE
gitlab       NodePort    10.68.156.103           80:31543/TCP,22:32693/TCP   3h17m

2.2更换原来的22端口---node04----17行
vim /etc/ssh/sshd_config 
将port打开改成10022

2.3 systemctl restart sshd

2.4 ssh -p10022 172.24.75.140-------任意节点尝试连接


2.5查看已经生效
[root@node-1 gitlab-runner1-ver130806-docker]# iptables -t nat -nvL PREROUTING
Chain PREROUTING (policy ACCEPT 177 packets, 10440 bytes)
 pkts bytes target     prot opt in     out     source               destination         
 123K 7328K cali-PREROUTING  all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* cali:6gwbT8clXdHdC1b1 */
 124K 7355K KUBE-SERVICES  all  --  *      *       0.0.0.0/0            0.0.0.0/0            /* kubernetes service portals */
33349 1928K DOCKER     all  --  *      *       0.0.0.0/0            0.0.0.0/0            ADDRTYPE match dst-type LOCAL
    0     0 DNAT       tcp  --  *      *       0.0.0.0/0            10.0.1.204           tcp dpt:22 to:10.0.1.204:31755
    1    40 DNAT       tcp  --  *      *       0.0.0.0/0            172.24.75.117        tcp dpt:22 to:172.24.75.117:31755


----防火墙做node04
2.5  iptables -t nat -A PREROUTING -d 172.24.75.141 -p tcp --dport 22 -j DNAT --to-destination 172.24.75.141:30096  	 ###端口根据实际改 kubectl get svc -n gitlab-ver130806

2.6再次连接:ssh 172.24.75.141发现已经到gitlab连接----在node3或者其他节点
加到开启自启:
cat /etc/rc.local

#↑ 如果想删除上面创建的这一条规则,将-A换成-D即可

2.7iptables -t nat  -nvL PREROUTING
s
2.8生成key
cd ~/.ssh/
cat id_rsa.pub
在gitlib搜索SSH keys将公钥配置到GitLab   SSH key

第15关k8s架构师课程之基于gitlab的CICD自动化六

原创2021-04-11 18:52·博哥爱运维

部署dind(docker in docker)

大家好,我是博哥爱运维。我们现在在k8s来部署dind服务,提供整个CI(持续集成)的功能。

我们看看docker version列出的结果 Docker采取的是C/S架构 Docker进程默认不监听任何端口,它会生成一个socket(/var/run/docker.sock)文件来进行本地进程通信 Docker C/S 之间采取Rest API作为通信协议,我们可以让Docker daemon进程监听一个端口,这就为我们用docker client调用远程调用docker daemon进程执行镜像构建提供了可行性

第15关k8s架构师课程之基于gitlab的CICD自动化六

docker in docker

# dind pip instll staus : kill -9  code 137(128+9) ,may be limits(cpu,memory) resources need change

# only have docker client ,use dind can be use normal
#dindSvc=$(kubectl -n kube-system get svc dind |awk 'NR==2{print $3}')
#export DOCKER_HOST="tcp://${dindSvc}:2375/"
#export DOCKER_DRIVER=overlay2
#export DOCKER_TLS_CERTDIR=""
# 先创建证书,哪个节点跑就哪个上面创建kubectl -n kube-system create secret generic harbor-ca --from-file=harbor-ca=/data/harbor/ssl/tls.cert

#下面记得改ip
vi dind.yaml

---
# SVC
kind: Service
apiVersion: v1
metadata:
  name: dind
  namespace: kube-system
spec:
  selector:
    app: dind
  ports:
    - name: tcp-port
      port: 2375
      protocol: TCP
      targetPort: 2375

---
# Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
  name: dind
  namespace: kube-system
  labels:
    app: dind
spec:
  replicas: 1
  selector:
    matchLabels:
      app: dind
  template:
    metadata:
      labels:
        app: dind
    spec:
      hostNetwork: true
      containers:
      - name: dind
        image: docker:19-dind
        #image: harbor.boge.com/library/docker:19-dind
        lifecycle:
          postStart:
            exec:
            #私有仓库登陆
              command: ["/bin/sh", "-c", "docker login harbor.boge.com -u 'admin' -p 'boge666'"]
           # 3. when delete this pod , use this keep kube-proxy to flush role done
          preStop:
            exec:
              command: ["/bin/sh", "-c", "sleep 5"]
        ports:
        - containerPort: 2375
#        resources:
#          requests:
#            cpu: 200m
#            memory: 256Mi
#          limits:
#            cpu: 0.5
#            memory: 1Gi
        readinessProbe:
          tcpSocket:
            port: 2375
          initialDelaySeconds: 10
          periodSeconds: 30
        livenessProbe:
          tcpSocket:
            port: 2375
          initialDelaySeconds: 10
          periodSeconds: 30
        securityContext: 
            privileged: true
        env: 
          - name: DOCKER_HOST 
            value: tcp://localhost:2375
          - name: DOCKER_DRIVER 
            value: overlay2
          - name: DOCKER_TLS_CERTDIR 
            value: ''
        volumeMounts: 
          - name: docker-graph-storage
            mountPath: /var/lib/docker
          - name: tz-config
            mountPath: /etc/localtime
           #在node04生成secret
           #kubectl -n kube-system create secret generic harbor-ca --from-file=harbor-ca=/data/harbor/ssl/tls.cert
          - name: harbor-ca
            mountPath: /etc/docker/certs.d/harbor.boge.com/ca.crt
            subPath: harbor-ca
       # kubectl create secret docker-registry boge-secret --docker-server=harbor.boge.com --docker-username=admin --docker-password=boge666 [email protected]
      hostAliases:
      - hostnames:
        - harbor.boge.com
        ip: 172.24.75.136
      imagePullSecrets:
      - name: bogeharbor
      volumes:
#      - emptyDir:
#          medium: ""
#          sizeLimit: 10Gi
      - hostPath:
          path: /var/lib/container/docker
        name: docker-graph-storage
      - hostPath:
          path: /usr/share/zoneinfo/Asia/Shanghai
        name: tz-config
      - name: harbor-ca
        secret:
          secretName: harbor-ca
          defaultMode: 0600
#
#        kubectl taint node 10.0.1.201 Ingress=:NoExecute
#        kubectl describe node 10.0.1.201 |grep -i taint
#        kubectl taint node 10.0.1.201 Ingress:NoExecute-
      nodeSelector:
        kubernetes.io/hostname: "172.24.75.136"
      tolerations:
      - operator: Exists

第15关 k8s架构师课程之CICD自动化devops大结局

原创2021-04-12 20:12·博哥爱运维

CI/CD生产实战项目

大家好,我是博哥爱运维。大家一定要仔细观看,多多操作,把整个流程都掌握透彻。这里我会采用目前企业较常见的编程语言python的flask模块来实施完整的项目自动化流程步骤,其他语言都可以参照这个项目来实施自动化流程。

1.为了实现CD、、先把k8s的二进制命令行工具kubectl容器化备用
[root@node-1 ~]# mkdir kubectl-docker
[root@node-1 ~]# cd kubectl-docker/
cp /opt/kube/bin/kubectl .

vi Dockerfile

docker build -t 仓库地址/镜像名:版本号  .
docker build -t harbor.boge.com/library/kubectl:v1.19.9 .

docker push harbor.boge.com/library/kubectl:v1.19.9


##Dockerfile
FROM alpine:3.13

MAINTAINER boge

ENV TZ "Asia/Shanghai"

RUN sed -ri 's+dl-cdn.alpinelinux.org+mirrors.aliyun.com+g' /etc/apk/repositories \
 && apk add --no-cache curl tzdata ca-certificates \
 && cp -f /usr/share/zoneinfo/Asia/Shanghai /etc/localtime \
 && apk upgrade \
 && rm -rf /var/cache/apk/*

COPY kubectl /usr/local/bin/
RUN chmod +x /usr/local/bin/kubectl

ENTRYPOINT ["kubectl"]
CMD ["help"]

2.python的flask模块----把下面几个文件提交到自己的代码仓库

准备好flask相关的代码文件上传到gitlab代码仓库

app.py

from flask import Flask
app = Flask(__name__)

@app.route
def hello_world():
    return 'Hello, boge! 21.04.11.01'

@app.route('/gg/')
def hello(username):
    return 'welcome' + ': ' + username + '!'

Dockerfile

FROM harbor.boge.com/library/python:3.5-slim-stretch
MAINTAINER boge

WORKDIR /kae/app

COPY requirements.txt .

RUN  sed -i 's/deb.debian.org/ftp.cn.debian.org/g' /etc/apt/sources.list \
  && sed -i 's/security.debian.org/ftp.cn.debian.org/g' /etc/apt/sources.list \
  && apt-get update -y \
  && apt-get install -y wget gcc libsm6 libxext6 libglib2.0-0 libxrender1 make \
  && apt-get clean && apt-get autoremove -y && rm -rf /var/lib/apt/lists/*
RUN pip install --no-cache-dir -i https://mirrors.aliyun.com/pypi/simple -r requirements.txt \
    && rm requirements.txt

COPY . .

EXPOSE 5000
HEALTHCHECK CMD curl --fail http://localhost:5000 || exit 1

ENTRYPOINT ["gunicorn", "app:app", "-c", "gunicorn_config.py"]

gunicorn_config.py

bind = '0.0.0.0:5000'
graceful_timeout = 3600
timeout = 1200
max_requests = 1200
workers = 1
worker_class = 'gevent'

requirements.txt

flask
gevent
gunicorn

在代码仓库变量配置里面配置如下变量值

2.2 在代码仓库变量配置里面配置如下变量值
Type           Key                      Value                    State        Masked
Variable   DOCKER_USER                 admin                   下面都关闭   下面都关闭
Variable   DOCKER_PASS                 boge666
Variable   REGISTRY_URL                harbor.boge.com
Variable   REGISTRY_NS                 product
File       KUBE_CONFIG_TEST            RBAC----k8s相关config配置文件内容
								通过RBAC脚本创建sh 1.sh test https://172.24.75.136:6443
								cat kube_config/test.kube.conf 
								复制到

3.准备准备项目自动化配置文件.gitlab-ci.yml

stages:
  - build
  - deploy
  - rollback

# tag name need: 20.11.21.01
variables:
  namecb: "flask-test"
  svcport: "5000"
  replicanum: "2"
  ingress: "flask-test.boge.com"
  certname: "mytls"
  CanarylIngressNum: "20"

.deploy_k8s: &deploy_k8s |
  if [ $CANARY_CB -eq 1 ];then cp -arf .project-name-canary.yaml ${namecb}-${CI_COMMIT_TAG}.yaml; sed -ri "s+CanarylIngressNum+${CanarylIngressNum}+g" ${namecb}-${CI_COMMIT_TAG}.yaml; sed -ri "s+NomalIngressNum+$(expr 100 - ${CanarylIngressNum})+g" ${namecb}-${CI_COMMIT_TAG}.yaml ;else cp -arf .project-name.yaml ${namecb}-${CI_COMMIT_TAG}.yaml;fi
  sed -ri "s+projectnamecb.boge.com+${ingress}+g" ${namecb}-${CI_COMMIT_TAG}.yaml
  sed -ri "s+projectnamecb+${namecb}+g" ${namecb}-${CI_COMMIT_TAG}.yaml
  sed -ri "s+5000+${svcport}+g" ${namecb}-${CI_COMMIT_TAG}.yaml
  sed -ri "s+replicanum+${replicanum}+g" ${namecb}-${CI_COMMIT_TAG}.yaml
  sed -ri "s+mytls+${certname}+g" ${namecb}-${CI_COMMIT_TAG}.yaml
  sed -ri "s+mytagcb+${CI_COMMIT_TAG}+g" ${namecb}-${CI_COMMIT_TAG}.yaml
  sed -ri "s+harbor.boge.com/library+${IMG_URL}+g" ${namecb}-${CI_COMMIT_TAG}.yaml
  cat ${namecb}-${CI_COMMIT_TAG}.yaml
  [ -d ~/.kube ] || mkdir ~/.kube
  echo "$KUBE_CONFIG" > ~/.kube/config
  if [ $NORMAL_CB -eq 1 ];then if kubectl get deployments.|grep -w ${namecb}-canary &>/dev/null;then kubectl delete deployments.,svc ${namecb}-canary ;fi;fi
  kubectl apply -f ${namecb}-${CI_COMMIT_TAG}.yaml --record
  echo
  echo
  echo "============================================================="
  echo "                    Rollback Indx List"
  echo "============================================================="
  kubectl rollout history deployment ${namecb}|tail -5|awk -F"[ =]+" '{print $1"\t"$5}'|sed '$d'|sed '$d'|sort -r|awk '{print $NF}'|awk '$0=""NR".   "$0'

.rollback_k8s: &rollback_k8s |
  [ -d ~/.kube ] || mkdir ~/.kube
  echo "$KUBE_CONFIG" > ~/.kube/config
  last_version_command=$( kubectl rollout history deployment ${namecb}|tail -5|awk -F"[ =]+" '{print $1"\t"$5}'|sed '$d'|sed '$d'|tail -${ROLL_NUM}|head -1 )
  last_version_num=$( echo ${last_version_command}|awk '{print $1}' )
  last_version_name=$( echo ${last_version_command}|awk '{print $2}' )
  kubectl rollout undo deployment ${namecb} --to-revision=$last_version_num
  echo $last_version_num
  echo $last_version_name
  kubectl rollout history deployment ${namecb}


build:
  stage: build
  retry: 2
  variables:
    # use dind.yaml to depoy dind'service on k8s
    ##dind  svc地址 kubectl get svc -A|grep dind
    DOCKER_HOST: tcp://10.68.248.116:2375/
    DOCKER_DRIVER: overlay2
    DOCKER_TLS_CERTDIR: ""
  ##services:
    ##- docker:dind
  before_script:
    - docker login ${REGISTRY_URL} -u "$DOCKER_USER" -p "$DOCKER_PASS"
  script:
    - docker pull ${REGISTRY_URL}/${REGISTRY_NS}/${namecb}:latest || true
    - docker build --network host --cache-from ${REGISTRY_URL}/${REGISTRY_NS}/${namecb}:latest --tag ${REGISTRY_URL}/${REGISTRY_NS}/${namecb}:$CI_COMMIT_TAG --tag ${REGISTRY_URL}/${REGISTRY_NS}/${namecb}:latest .
    - docker push ${REGISTRY_URL}/${REGISTRY_NS}/${namecb}:$CI_COMMIT_TAG
    - docker push ${REGISTRY_URL}/${REGISTRY_NS}/${namecb}:latest
  after_script:
    - docker logout ${REGISTRY_URL}
  tags:
    - "docker"
  only:
    - tags





#--------------------------K8S DEPLOY--------------------------------------------------

BOGE-deploy:
  stage: deploy
  image: harbor.boge.com/library/kubectl:v1.19.9
  variables:
    KUBE_CONFIG: "$KUBE_CONFIG_TEST"
    IMG_URL: "${REGISTRY_URL}/${REGISTRY_NS}"
    NORMAL_CB: 1
  script:
    - *deploy_k8s
  when: manual  ##手动开关
  only:
    - tags

# canary start###金丝雀发布
BOGE-canary-deploy:
  stage: deploy
  image: harbor.boge.com/library/kubectl:v1.19.9
  variables:
    KUBE_CONFIG: "$KUBE_CONFIG_TEST"
    IMG_URL: "${REGISTRY_URL}/${REGISTRY_NS}"
    CANARY_CB: 1
  script:
    - *deploy_k8s
  when: manual
  only:
    - tags
# canary end

BOGE-rollback-1:
  stage: rollback
  image: harbor.boge.com/library/kubectl:v1.19.9
  variables:
    KUBE_CONFIG: "$KUBE_CONFIG_TEST"
    ROLL_NUM: 1
  script:
    - *rollback_k8s
  when: manual
  only:
    - tags


BOGE-rollback-2:
  stage: rollback
  image: harbor.boge.com/library/kubectl:v1.19.9
  variables:
    KUBE_CONFIG: "$KUBE_CONFIG_TEST"
    ROLL_NUM: 2
  script:
    - *rollback_k8s
  when: manual
  only:
    - tags


BOGE-rollback-3:
  stage: rollback
  image: harbor.boge.com/library/kubectl:v1.19.9
  variables:
    KUBE_CONFIG: "$KUBE_CONFIG_TEST"
    ROLL_NUM: 3
  script:
    - *rollback_k8s
  when: manual
  only:
    - tags
4.准备k8s的deployment模板文件 .project-name.yaml

!!!!这里要注意提前在K8S把harbor拉取的凭证secret给创建好,命令如下:
#			命名空间							secret名字
kubectl -n test create secret docker-registry boge-secret --docker-server=harbor.boge.com --docker-username=admin --docker-password=boge666 --docker-[email protected]

---
# SVC
kind: Service
apiVersion: v1
metadata:
  labels:
    kae: "true"
    kae-app-name: projectnamecb
    kae-type: app
  name: projectnamecb
spec:
  selector:
    kae: "true"
    kae-app-name: projectnamecb
    kae-type: app
  ports:
    - name: http-port
      port: 80
      protocol: TCP
      targetPort: 5000
#      nodePort: 12345
#  type: NodePort

---
# Ingress
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  labels:
    kae: "true"
    kae-app-name: projectnamecb
    kae-type: app
  name: projectnamecb
spec:
  tls:
  - hosts:
    - projectnamecb.boge.com
    secretName: mytls
  rules:
  - host: projectnamecb.boge.com
    http:
      paths:
      - path: /
        backend:
          serviceName: projectnamecb
          servicePort: 80

---
# Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
  name: projectnamecb
  labels:
    kae: "true"
    kae-app-name: projectnamecb
    kae-type: app
spec:
  replicas: replicanum
  selector:
    matchLabels:
      kae-app-name: projectnamecb
  template:
    metadata:
      labels:
        kae: "true"
        kae-app-name: projectnamecb
        kae-type: app
    spec:
      containers:
      - name: projectnamecb
        image: harbor.boge.com/library/projectnamecb:mytagcb
        env:
          - name: TZ
            value: Asia/Shanghai
        ports:
        - containerPort: 5000
        ###健康监测可以去掉一下
        ###如如果没有200的返回的话
        readinessProbe:
          httpGet:
            scheme: HTTP
            path: /
            port: 5000
          initialDelaySeconds: 10
          periodSeconds: 5
          timeoutSeconds: 3
          successThreshold: 1
          failureThreshold: 3
        livenessProbe:
          httpGet:
            scheme: HTTP
            path: /
            port: 5000
          initialDelaySeconds: 10
          periodSeconds: 5
          timeoutSeconds: 3
          successThreshold: 1
          failureThreshold: 3
        resources:
          requests:
            cpu: 0.3
            memory: 0.5Gi
          limits:
            cpu: 0.3
            memory: 0.5Gi
      imagePullSecrets:
      - name: boge-secret
5.准备准备好K8S上金丝雀部署的模板文件 .project-name-canary.yaml

---
# SVC
kind: Service
apiVersion: v1
metadata:
  labels:
    kae: "true"
    kae-app-name: projectnamecb-canary
    kae-type: app
  name: projectnamecb-canary
spec:
  selector:
    kae: "true"
    kae-app-name: projectnamecb-canary
    kae-type: app
  ports:
    - name: http-port
      port: 80
      protocol: TCP
      targetPort: 5000
#      nodePort: 12345
#  type: NodePort

---
# Ingress
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  labels:
    kae: "true"
    kae-app-name: projectnamecb-canary
    kae-type: app
  name: projectnamecb
  annotations:
    nginx.ingress.kubernetes.io/service-weight: |
    ###高阶参数、正式服务service:百分比,测试服务sevice:百分比
        projectnamecb: NomalIngressNum, projectnamecb-canary: CanarylIngressNum
spec:
  tls:
  - hosts:
    - projectnamecb.boge.com
    secretName: mytls
  rules:
  - host: projectnamecb.boge.com
    http:
      paths:
      - path: /
        backend:
          serviceName: projectnamecb
          servicePort: 80
      - path: /
        backend:
          serviceName: projectnamecb-canary
          servicePort: 80

---
# Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
  name: projectnamecb-canary
  labels:
    kae: "true"
    kae-app-name: projectnamecb-canary
    kae-type: app
spec:
  replicas: replicanum
  selector:
    matchLabels:
      kae-app-name: projectnamecb-canary
  template:
    metadata:
      labels:
        kae: "true"
        kae-app-name: projectnamecb-canary
        kae-type: app
    spec:
      containers:
      - name: projectnamecb-canary
        image: harbor.boge.com/library/projectnamecb:mytagcb
        env:
          - name: TZ
            value: Asia/Shanghai
        ports:
        - containerPort: 5000
        readinessProbe:
          httpGet:
            scheme: HTTP
            path: /
            port: 5000
          initialDelaySeconds: 10
          periodSeconds: 5
          timeoutSeconds: 3
          successThreshold: 1
          failureThreshold: 3
        livenessProbe:
          httpGet:
            scheme: HTTP
            path: /
            port: 5000
          initialDelaySeconds: 10
          periodSeconds: 5
          timeoutSeconds: 3
          successThreshold: 1
          failureThreshold: 3
        resources:
          requests:
            cpu: 0.3
            memory: 0.5Gi
          limits:
            cpu: 0.3
            memory: 0.5Gi
      imagePullSecrets:
      - name: boge-secret

快速生成k8s的yaml配置的4种方法

1、通过kubectl命令行快速生成一个deployment及service的yaml标准配置

# 这条命令是不是很眼熟,对了,这就是博哥前面的课程里面创建deployment的命令,我们在后面加上`--dry-run -o yaml`,--dry-run代表这条命令不会实际在K8s执行,-o yaml是会将试运行结果以yaml的格式打印出来,这样我们就能轻松获得yaml配置了

# kubectl create deployment nginx --image=nginx --dry-run -o yaml       
apiVersion: apps/v1     # <---  apiVersion 是当前配置格式的版本
kind: Deployment     #<--- kind 是要创建的资源类型,这里是 Deployment
metadata:        #<--- metadata 是该资源的元数据,name 是必需的元数据项
  creationTimestamp: null
  labels:
    app: nginx
  name: nginx
spec:        #<---    spec 部分是该 Deployment 的规格说明
  replicas: 1        #<---  replicas 指明副本数量,默认为 1
  selector:
    matchLabels:
      app: nginx
  strategy: {}
  template:        #<---   template 定义 Pod 的模板,这是配置文件的重要部分
    metadata:        #<---     metadata 定义 Pod 的元数据,至少要定义一个 label。label 的 key 和 value 可以任意指定
      creationTimestamp: null
      labels:
        app: nginx
    spec:           #<---  spec 描述 Pod 的规格,此部分定义 Pod 中每一个容器的属性,name 和 image 是必需的
      containers:
      - image: nginx
        name: nginx
        resources: {}
status: {}


# 基于上面的deployment服务生成service的yaml配置
# kubectl expose deployment nginx --port=80 --target-port=80 --dry-run -o yaml
apiVersion: v1
kind: Service
metadata:
  creationTimestamp: null
  labels:
    app: nginx
  name: nginx
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    app: nginx
status:
  loadBalancer: {}
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647

2、利用helm查看各种官方标准复杂的yaml配置以供参考

# 以查看rabbitmq集群安装的配置举例
# 首先添加chart仓库
helm repo add aliyun-apphub https://apphub.aliyuncs.com
helm repo update

# 这里我们在后面加上 --dry-run --debug 就是模拟安装并且打印输出所有的yaml配置
helm install -n rq rabbitmq-ha aliyun-apphub/rabbitmq-ha --dry-run --debug 
1234567

3、将docker-compose转成k8s的yaml格式配置

# 下载二进制包
# https://github.com/kubernetes/kompose/releases

# 开始转发yaml配置
./kompose-linux-amd64 -f docker-compose.yml convert
12345

4、docker命令输出转换成对应的yaml文件示例

这里以 Prometheus Node Exporter 为例演示如何运行自己的 DaemonSet。
Prometheus 是流行的系统监控方案,Node Exporter 是 Prometheus 的 agent,以 Daemon 的形式运行在每个被监控节点上。
如果是直接在 Docker 中运行 Node Exporter 容器,命令为:

docker run -d \
    -v "/proc:/host/proc" \
    -v "/sys:/host/sys" \  
    -v "/:/rootfs" \
    --net=host \  
    prom/node-exporter \  
    --path.procfs /host/proc \  
    --path.sysfs /host/sys \  
    --collector.filesystem.ignored-mount-points "^/(sys|proc|dev|host|etc)($|/)"



将其转换为 DaemonSet 的 YAML 配置文件 node_exporter.yml:

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
  name: node-exporter-daemonset
spec:
  template:
    metadata:
      labels:
        app: prometheus
    spec:
      hostNetwork: true      # <<<<<<<< 1 直接使用 Host 的网络
      containers:
      - name: node-exporter
        image: prom/node-exporter
        imagePullPolicy: IfNotPresent
        command:             # <<<<<<<< 2 设置容器启动命令
        - /bin/node_exporter
        - --path.procfs
        - /host/proc
        - --path.sysfs
        - /host/sys
        - --collector.filesystem.ignored-mount-points
        - ^/(sys|proc|dev|host|etc)($|/)
        volumeMounts:        # <<<<<<<< 3 通过Volume将Host路径/proc、/sys 和 / 映射到容器中
        - name: proc
          mountPath: /host/proc
        - name: sys
          mountPath: /host/sys
        - name: root
          mountPath: /rootfs
      volumes:
      - name: proc
        hostPath:
          path: /proc
      - name: sys
        hostPath:
          path: /sys
      - name: root
        hostPath:
          path: /
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758

关于K8S服务健康检测方式补充说明

原创2021-03-09 21:37·博哥爱运维

Liveness 和 Readiness 的三种使用方式

          readinessProbe:  # 定义只有http检测容器6222端口请求返回是 200-400,则接收下面的Service web-svc 的请求
            httpGet:
              scheme: HTTP
              path: /check
              port: 6222
            initialDelaySeconds: 10   # 容器启动 10 秒之后开始探测,注意观察下g1的启动成功时间
            periodSeconds: 5          # 每隔 5 秒再探测一次
            timeoutSeconds: 5         # http检测请求的超时时间
            successThreshold: 1       # 检测到有1次成功则认为服务是`就绪`
            failureThreshold: 3       # 检测到有3次失败则认为服务是`未就绪`
          livenessProbe:  # 定义只有http检测容器6222端口请求返回是 200-400,否则就重启pod
            httpGet:
              scheme: HTTP
              path: /check
              port: 6222
            initialDelaySeconds: 10
            periodSeconds: 5
            timeoutSeconds: 5
            successThreshold: 1
            failureThreshold: 3

#-----------------------------------------
            
          readinessProbe:
            exec:
              command:
              - sh
              - -c
              - "redis-cli ping"
            initialDelaySeconds: 5
            periodSeconds: 10
            timeoutSeconds: 1
            successThreshold: 1
            failureThreshold: 3
          livenessProbe:
            exec:
              command:
              - sh
              - -c
              - "redis-cli ping"
            initialDelaySeconds: 30
            periodSeconds: 10
            timeoutSeconds: 5
            successThreshold: 1
            failureThreshold: 3

#-----------------------------------------

        readinessProbe:
          tcpSocket:
            port: 9092
          initialDelaySeconds: 15
          periodSeconds: 10
        livenessProbe:
          tcpSocket:
            port: 9092
          initialDelaySeconds: 15
          periodSeconds: 10

你可能感兴趣的:(运维,运维)