浙大博士导师深度整理:Tensorflow 和 Pytorch 的笔记(包含经典项目实战)

作为一名 AI 工程师,掌握一门深度学习框架是必备的生存技能之一。

自 TensorFlow 从 Google 中脱颖而出以来,它在研究和商业领域成为最受欢迎的开源深度学习框架,紧接着 从 Facebook 诞生的 PyTorch 由于社区推动的易用性改进和越来越广泛的用例部署,而迅速赶上 TensorFlow。

两个框架在当年一度备受争议,TensorFlow 和 PyTorch 谁更好?

从去年校招开始到现在负责部门的面试,从我手上流走的简历多多少少也有上百封了。

面试了很多候选人,当问他们常用的深度学习框架时,发现他们清一色的选择了:PyTorch。

从各个方面可以看出,经过这些年的发展,PyTorch 在学术圈的「垄断」地位基本已经站稳

诚然,比起 TensorFlow,大多数研究人员更偏爱 PyTorch 的 API,PyTorch 设计更科学,而 TensorFlow 自推出 2.0 版本后,与 TF 1.x 的 API 差异实在不小,导致 doc 的阅读成本和版本适配成本都相当高。

如果是初学者,无脑 Pytorch 就对了。社区资源多、开源代码多、上手也很简单,各大厂商对 Pytorch 的支持也多 (TensorRT、ONNX)。

其实框架的作用就是我们无需造轮子可以直接使用,并且节省工作量,对于 Pytorch 来说对研究友好、对训练友好、对白嫖大佬的开源代码也友好,对模型部署也友好,可以节省大把时间去做其他有意义的事情,没有理由不使用 Pytorch。

如果是工作了,就看公司在用什么吧,因为公司是面向需求的

在业界,无论算法性能有多好,总归还是要上线的,选择框架的时候便会考虑以下这些问题,是否方便部署到线上,支持多语言,并且有较好的系统稳定性以及有非常多线上应用实例。

像业界大多数支撑搜广推场景的模型,还是用 Tensorflow,TensorFlow 适合大规模部署,特别是需要跨平台和嵌入式部署时。
网上解读 Tensorflow、PyTorch 文章非常多但知识点零散,学习起来抓不住重点。

最近一段时间,我整理一套深度学习框架必备的学习资料,这套资料内容非常详尽全面,课程通过讲解和实战操作,带你从零开始训练网络,做到独立搭建和设计卷积神经网络(包括主流分类和检测网络),并进行神经网络的训练和推理(涉及 PyTorch、Tensorflow、Caffe、Mxnet 等多个主流框架),通过实战让你掌握各种深度学习开源框架。


资料内容过多,不一一展开,仅截取框架学习部分目录大家感受下。

深度学习与神经网络

  • 深度学习简介

  • 基本的深度学习架构

  • 神经元

  • 激活函数详解(sigmoid、tanh、relu 等)

  • 感性认识隐藏层

  • 如何定义网络层

  • 损失函数

推理和训练

  • 神经网络的推理和训练

  • bp 算法详解

  • 归一化

  • Batch Normalization 详解

  • 解决过拟合

  • dropout

  • softmax

  • 手推神经网络的训练过程

从零开始训练神经网络

  • 使用 python 从零开始实现神经网络训练

  • 构建神经网络的经验总结

深度学习开源框架

  • pytorch

  • tensorflow

  • caffe

  • mxnet

  • keras

  • 优化器详解 (GD,SGD,RMSprop 等

由于工作需要,这份教程我本人也在学习中,虽然已经从事这个行业多年,再看这份教程的时候,仍然能查漏补缺,收获满满,我相信不管是 AI 入门,还是已经具备了一定的工作经验,这份学习资料,都值得你去认真学习研究。

资料获取

该资料已打包,梳理不易,获取前麻烦点赞、收藏、关注。获取方法有两种:

  • 方式一、发送如下图片至微信,长按识别,回复:20220112
  • 方式二、微信搜索公众号:机器学习社区,后台回复:20220112
    在这里插入图片描述

你可能感兴趣的:(机器学习,pytorch,tensorflow,深度学习,python)