一、前言
之前在AQS中介绍到其中的Condition队列,而今天本文就介绍与其相关的Condition。Condition是一个多线程间协调通信的工具类,在synchornize中,使用的是wait和notify来实现,而Condition除了实现wait和notify的功能以外,他的好处在于一个lock可以创建多个Condition,可以选择性的通知wait的线程,接下来看下具体的介绍。
二、主要特点
- Condition 的前提是Lock,由AQS中newCondition()方法 创建Condition的对象
- Condition await方法表示线程从AQS中移除,并释放线程获取的锁,并进入Condition等待队列中等待,等待被signal
- Condition signal方法表示唤醒对应Condition等待队列中的线程节点,并加入AQS中,准备去获取锁。
三、流程示意图:
- 有三个节点在AQS中,三个线程分别触发了lock的lock方法,三个节点还处于锁的竞争状态,都在AQS队列中,而已经有两个节点在Condition队列中。
- 节点1执行Condition.await(),先在Condition队列队尾添加节点,并释放节点1的锁,并把节点1加入到等待队列中,并把lastWaiter更新为节点1
- 节点2执行signal(),将节点4移出Codition队列,并将节点4加入AQS队列中等待获取锁资源
四、源码分析
4.1 await()
public final void await() throws InterruptedException {
if (Thread.interrupted()) throw new InterruptedException();
//将当前线程包装成NODE,并将其添加到Condition队列中
Node node = addConditionWaiter();
//释放当前线程占有的锁资源
int savedState = fullyRelease(node);
int interruptMode = 0;
//遍历AQS队列,判断节点是否在AQS队列中
//如果不在说明没有获取锁的资格,则继续阻塞,直到被加入到队列中
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
//如果被唤醒,则重新开始获取资源,
//如果竞争不到则继续休眠,等待被唤醒
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
//检测线程是中断唤醒还是锁释放唤醒,因为如果中断唤醒的节点仍然存在Condition队列中,所以需要从Condition中删除
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
4.1.1 addConditionWaiter()
加入Condition队列方法,并没有像AQS队列中那样处理并发情况,是因为在操作Condition的时候当前线程已经获取了AQS独占的资源,所以不用考虑并发问题
private Node addConditionWaiter() {
Node t = lastWaiter;
//1. 如果尾节点已经Cancel,直接清除。出现该情况
//是线程被中断时或超时,await()方法中checkInterruptWhileWaiting方法调用
//transferAfterCancelledWait导致
if (t != null && t.waitStatus != Node.CONDITION) {
//对t.waitStatus != Node.CONDITION的节点进行删除
unlinkCancelledWaiters();
t = lastWaiter;
}
//把当前节点封装成NODE放入Condition队列
Node node = new Node(Thread.currentThread(), Node.CONDITION);
if (t == null)
firstWaiter = node;
else
t.nextWaiter = node;
lastWaiter = node;
return node;
}
4.1.2 unlinkCancelledWaiters()
清除Condition队列中因超时或者中断而还存在的点(这些节点不是Condition应该被删除)
private void unlinkCancelledWaiters() {
Node t = firstWaiter;
Node trail = null;
while (t != null) {
Node next = t.nextWaiter;
if (t.waitStatus != Node.CONDITION) {
//如果节点不为Condition状态,则将对应节点的next删除
t.nextWaiter = null;
if (trail == null)
//next节点赋予fistWaiter相当于删除t节点
firstWaiter = next;
else
//同样也是删除t节点操作
trail.nextWaiter = next;
if (next == null)
lastWaiter = trail;
}
else
trail = t;
//从下一个节点开始处理
t = next;
}
}
4.1.3 isOnSyncQueue(Node)
final boolean isOnSyncQueue(Node node) {
//如果节点状态是Condition或者node.prev为空则返回false,因为如果节点状态是Condition,说明该节点只会存在于Condition队列中,而之前说过AQS是个双向链表而Condition是个单向链表,而在入AQS队列之前会分配其前驱节点。
if (node.waitStatus == Node.CONDITION || node.prev == null)
return false;
//同理因为在AQS队列中会分配node的next节点
if (node.next != null)
return true;
//如果前面判断完了,则从同步队列中遍历判断是否有当前节点
return findNodeFromTail(node);
4.2 signal()
将Condition队列中等待的线程节点,转移到AQS队列中
public final void signal() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
//记录第一个节点
Node first = firstWaiter;
if (first != null)
doSignal(first);
}
private void doSignal(Node first) {
do {
if ( (firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
first.nextWaiter = null;
//将first节点移动到AQS队列中
} while (!transferForSignal(first) &&
(first = firstWaiter) != null);
}
final boolean transferForSignal(Node node) {
//CAS控制将节点状态转化为0
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;
//调用之前AQS的enq方法将节点加入到AQS中
Node p = enq(node);
int ws = p.waitStatus;
//并将节点状态处理成SIGNAL
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
LockSupport.unpark(node.thread);
return true;
}
正常情况下ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL)是不会触发的,所以线程一般不会在这里唤醒,只有在signal以后继续调用lock.unlock,由于节点在AQS队列中,如果获取锁资源则会被唤醒。
五、使用场景
5.1 顺序打印ABC问题
实现代码:
public class printer {
private volatile char currentTheadName = 'a';
private ReentrantLock lock = new ReentrantLock();
Condition aCondition = lock.newCondition();
Condition bCondition = lock.newCondition();
Condition cCondition = lock.newCondition();
public class printAThread implements Runnable{
public void run() {
for (int i = 0; i < 10; i++) {
lock.lock();
try {
while (currentTheadName != 'a'){
aCondition.await();
}
System.out.println("第"+i+"次打印"+"Print A");
currentTheadName = 'b';
bCondition.signal();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
}
public class printBThread implements Runnable{
public void run() {
for (int i = 0; i < 10; i++) {
lock.lock();
try {
while (currentTheadName != 'b'){
bCondition.await();
}
System.out.println("第"+i+"次打印"+"Print B");
currentTheadName = 'c';
cCondition.signal();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
}
public class printCThread implements Runnable{
public void run() {
for (int i = 0; i < 10; i++) {
lock.lock();
try {
while (currentTheadName != 'c'){
cCondition.await();
}
System.out.println("第"+i+"次打印"+"Print C");
currentTheadName = 'a';
aCondition.signal();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
}
public static void main(String[] args) {
printer printer = new printer();
ExecutorService service = Executors.newFixedThreadPool(3);
service.execute(printer.new printAThread());
service.execute(printer.new printBThread());
service.execute(printer.new printCThread());
service.shutdown();
}
}
返回结果:
第1次打印Print A
第1次打印Print B
第1次打印Print C
第2次打印Print A
第2次打印Print B
第2次打印Print C
第3次打印Print A
第3次打印Print B
第3次打印Print C
第4次打印Print A
第4次打印Print B
第4次打印Print C
第5次打印Print A
第5次打印Print B
第5次打印Print C
第6次打印Print A
第6次打印Print B
第6次打印Print C
第7次打印Print A
第7次打印Print B
第7次打印Print C
第8次打印Print A
第8次打印Print B
第8次打印Print C
第9次打印Print A
第9次打印Print B
第9次打印Print C
5.2 生产者和消费者问题
public class ProducerAndConsumer {
private static List
返回结果:
buff is empty
buff is empty
buff is empty
buff is empty
buff is empty
buff is empty
buff is empty
producer produce one , buffe size is 1
consume the head one , buffe size is 0
buff is empty
buff is empty
buff is empty
buff is empty
buff is empty
buff is empty
producer produce one , buffe size is 1
consume the head one , buffe size is 0
buff is empty
buff is empty
buff is empty
buff is empty
buff is empty
producer produce one , buffe size is 1
producer produce one , buffe size is 2
consume the head one , buffe size is 1
consume the head one , buffe size is 0
buff is empty
buff is empty
buff is empty
producer produce one , buffe size is 1
consume the head one , buffe size is 0
buff is empty
buff is empty
producer produce one , buffe size is 1
consume the head one , buffe size is 0
buff is empty
producer produce one , buffe size is 1
consume the head one , buffe size is 0
producer produce one , buffe size is 1
producer produce one , buffe size is 2
producer produce one , buffe size is 3
producer produce one , buffe size is 4