- YOLO11改进-模块-引入CMUNeXt Block 增强全局信息
一勺汤
YOLOv11模型改进系列网络YOLO目标检测模块魔改YOLOv11YOLOV11模型改进
在医学图像分割领域面临诸多问题,如U形架构卷积网络难以提取全局信息,混合架构因计算资源受限在实际医疗场景应用受阻,轻量化网络在保证性能与提取全局信息上存在矛盾。因此,设计了CMUNeXtBlock,CMUNeXtBlock采用大核深度可分离卷积替代普通卷积来提取全局信息,凭借深度可分离卷积减少参数和计算成本以维持轻量化,同时综合利用卷积归纳偏置和全局信息提取能力,有效解决了这些问题。代码:http
- Prompt工程全解析:从入门到精通的终极指南
二川bro
智能AI人工智能prompt
Prompt工程全解析:从入门到精通的终极指南发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。https://www.captainbed.cn/ccc一、Prompt设计核心法则1.1角色定位法则[角色设定]你是一位资深全栈工程师,拥有10年React和Node.js开发经验[任务要求]为电商系统设计购物车模块,要求:1.支持商品增删改查2.实时计算总价
- Stable Diffusion API /sdapi/v1/txt2img的完整参数列表及其说明
aerror
stablediffusion
基本参数{"prompt":"高质量,精细的恐龙",//主提示词"negative_prompt":"模糊,低质量",//负面提示词"styles":["photorealistic","detailed"],//应用的风格预设"seed":42,//随机种子,-1为随机"subseed":-1,//次级种子"subseed_strength":0.3,//次级种子影响强度(0-1)"seed_r
- 【C 语言极简自学笔记】Day1 初识「C语言」
LQYYDSY
学习笔记笔记c语言
一句话认识C语言「C是唯一能让你同时触摸硬件和软件的语言」C语言是一门通用计算机编程语言,广泛应用于底层开发,主要是提供一种能以简易的方式编译、处理低级存储器、产生少量的机器码以及不需要任何运行环境支持便能运行的编程语言。第一个C语言实例#includeintmain(){printf("HelloWorld!!!");return0;}(1)main函数是C语言程序的入口,一个C语言程序有且只有
- 计算机视觉入门
109702008
人工智能#深度学习计算机视觉人工智能
计算机视觉(ComputerVision)是一门涉及使机器能够从图像或者多维数据中提取信息,解释、理解并对物体或场景进行处理的学科。以下是一个基本的计算机视觉入门学习路线,旨在为刚刚接触这一领域的学习者提供指导。1.基础知识储备数学基础:线性代数、概率论和数理统计、微积分、优化理论。编程语言:掌握至少一门编程语言,Python是目前在计算机视觉领域最流行的语言,其次是C++。2.计算机视觉基础数字
- 计算机视觉(Computer Vision, CV)的入门到实践的详细学习路线
云梦优选
计算机数据库大数据计算机视觉学习人工智能
一、基础准备1.数学基础线性代数深入矩阵运算,理解矩阵乘法、转置、逆等基本概念。掌握特征值与特征向量的几何意义,理解其在图像压缩、特征提取中的应用。学习奇异值分解(SVD)及其在降维和数据压缩中的具体应用。概率与统计熟悉贝叶斯定理及其在分类任务中的应用,如朴素贝叶斯分类器。理解常见概率分布(如正态分布、二项分布)及其性质。学习统计推断方法,如假设检验、置信区间估计,以评估模型性能。微积分掌握梯度、
- 新手村:统计量均值、中位数、标准差、四分位数
嘉羽很烦
机器学习均值算法算法
新手村:统计量均值、中位数、标准差、四分位数统计量定义与讲解统计量定义计算公式示例说明均值数据集中的所有数值之和除以数值的个数。Mean=∑i=1nxin\text{Mean}=\frac{\sum_{i=1}^{n}x_i}{n}Mean=n∑i=1nxi对于数据集[1,2,3,4,5],均值为(1+2+3+4+5)/5=3(1+2+3+4+5)/5=3(1+2+3+4+5)/5=3中位数将数据
- 1.1 网络爬虫简介
lwen.steven
从头开始学Java数据采集
随着互联网的迅速发展,网络数据资源呈爆发式增长,信息需求者如何从网络中提取信息变得更加重要。如今,有效地获取网络数据资源的方式,便是网络爬虫。网络爬虫又称为网络蜘蛛或者Web信息采集器,是一种按照指定规则,自动抓取或下载网络资源的计算机程序或自动化脚本。网络爬虫狭义上的理解:利用标准网络协议(如HTTP、HTTPS等),根据网络超链接和信息检索方法(如深度优先)遍历网络数据的软件程序。网络爬虫功能
- 计算机网络:(一)详细讲解互联网概述与组成 (附带图谱更好对比理解)
珹洺
计算机网络计算机网络php开发语言服务器后端数据库网络
计算机网络(一)详细讲解互联网概述与组成前言一、计算机网络在信息时代中的作用二、互联网概述1.网络中的网络2.互联网基础的三个阶段3.什么是标准化工作三、互联网的组成1.边缘部分2.核心部分总结(核心概念速记):**知识图谱****重点提炼**前言在当今数字化时代,互联网已经成为人们生活、工作和学习中不可或缺的一部分。计算机网络作为互联网的基础支撑,其重要性不言而喻。这篇博客将开启我们探索计算机网
- 利用matlab实现贝叶斯优化算法(BO)优化支持向量机回归(SVR)的超参数
是内啡肽耶
算法matlab支持向量机机器学习回归
【导读】在机器学习建模中,支持向量机(SVM)回归模型的效果高度依赖超参数选择。但手动调参就像"大海捞针",而网格搜索又面临"计算爆炸"的难题。今天给大家介绍一个智能调参黑科技——贝叶斯优化算法。通过Matlab实现,只需几分钟就能让模型性能自动升级!一、为什么要用贝叶斯优化调参?传统调参三大痛点:C参数(正则化强度):过小导致过拟合,过大削弱模型能力ε参数(不敏感区域):决定对预测误差的容忍度核
- 大模型巅峰对决:DeepSeek vs GPT-4/Claude/PaLM-2 全面对比与核心差异揭秘
accurater
机器学习科技人工智能
喜欢可以到主页订阅专栏目录技术架构对比性能表现与基准测试多模态与多语言能力推理效率与成本分析开源生态与行业适配应用场景与案例研究未来发展与技术趋势代码实现与调用示例1.技术架构对比DeepSeek:动态稀疏激活的混合专家系统(MoE)动态路由机制:每个输入仅激活约5.5%的参数(如6710亿参数中激活370亿),显著降低计算能耗40%。模块化设计:支持金融、医疗等领域的即插即用式微调,行业适配能力
- 3月份学习任务、工作计划
Kamui_0us
学习
3月18日报名六级3月22日之前收集团日材料3月22日收集五四述职材料3月29日计算解二级学英语:为了六级为了绩点为了大英赛为了雅思接续规划留学计划恶补数学,拉下的慢慢补回来今日学习任务:学习本周的解析几何课程,背六级单词,还有时间可以看看github有关知识
- 利用 OpenCV 库进行实时目标物体检测
欣然~
opencv人工智能计算机视觉
一、代码概述此代码利用OpenCV库实现了基于特征匹配的实时物体检测系统。通过摄像头捕获实时视频帧,将其与预先加载的参考图像进行特征匹配,从而识别出视频帧中是否存在与参考图像匹配的物体。二、环境依赖OpenCV:用于图像处理、特征提取和匹配等操作。NumPy:用于数值计算,OpenCV依赖于NumPy进行数组操作。可以使用以下命令安装所需库:bashpipinstallopencv-pythonn
- AI笔记——语音识别
Yuki-^_^
人工智能AI人工智能笔记语音识别
摘要:语音识别(AutomaticSpeechRecognition,ASR)是人工智能领域的一项重要技术,它将人类的语音信号转换成文字。随着科技的发展,语音识别已经成为现代生活和工作中不可或缺的一部分。本文旨在介绍语音识别的基本原理、关键技术、应用场景以及未来发展趋势。一、历史与发展语音识别技术的历史可以追溯到20世纪50年代,那时的技术基于规则和模板。随着计算能力的提升和深度学习方法的出现,语
- 【NLP】 9. 处理创造性词汇 & 词组特征(Creative Words & Features Model), 词袋模型处理未知词,模型得分
pen-ai
NLP机器学习自然语言处理人工智能深度学习
这里写目录标题处理创造性词汇&词组特征(CreativeWords&FeaturesModel)1.处理否定(NegationHandling)2.词组特征(Bigrams&N-grams)3.结合否定传播与n-grams进行优化词袋模型(Bag-of-Words,BoW)1.BoW示例2.处理未知词3.为什么忽略未知词?4.处理未知词的方法计算模型得分(ScoreCalculation)处理创造
- php中文乱码问号,如何解决PHP中文乱码问题?
Helios-Yang
php中文乱码问号
作为该国家/区域内信息处理的基础,字符编码集起着统一编码的重要作用。字符编码集按长度分为SBCS(单字节字符集),DBCS(双字节字符集)两大类。早期的软件(尤其是操作系统),为了解决本地字符信息的计算机处理,出现了各种本地化版本(L10N),为了区分,引进了LANG,Codepage等概念。但是由于各个本地字符集代码范围重叠,相互间信息交换困难;软件各个本地化版本独立维护成本较高。因此有必要将本
- Redis缓存判断热点数据及进行数据预热的几种方式介绍
hxj..
分布式缓存redis数据库热点数据数据预热
Redis缓存如何判断热点数据?热点数据计算整体来讲就是基于访问频率,可以是整体的访问次数,可以是一定时间内的频率,可以是部分请求的采样,可以借助成熟工具等,要根据业务需求来定1.基于访问频率原理:通过统计每个键的访问频率(如每秒访问次数),识别出访问频率最高的数据。实现方法:使用Redis的INCR命令或监控工具(如RedisMonitor)统计键的访问频率。统计访问频率要确保并发场景下数据操作
- 计算机四级 - 数据库原理 - 第7章「数据库系统实现技术」
akbar&
计算机四级数据库笔记
7.1数据库管理系统概述7.1.1数据库管理系统的基本功能数据定义功能:数据库模式(包括外模式、模式、内模式)的定义、数据库完整性的定义、安全保密的定义,索引和视图的定义数据操纵功能数据存储和管理功能事务管理功能数据定义功能7.1.2数据库管理系统的主要成分和工作流程:存储管理器:高效的利用辅助存储器来存放数据,并使得数据能够快速存取重要模块:索引、文件、记录管理器查询处理器:高效的执行用SQL等
- 如何处理PHP中的编码问题
奥顺互联V
phpphpandroid开发语言
如何处理PHP中的编码问题在PHP开发过程中,编码问题是一个常见且棘手的问题。无论是处理用户输入、数据库交互,还是与外部API通信,编码问题都可能导致数据乱码、解析错误甚至安全漏洞。本文将深入探讨PHP中的编码问题,并提供一些实用的解决方案。1.理解字符编码字符编码是计算机中表示字符的方式。常见的字符编码包括ASCII、UTF-8、GBK等。UTF-8是一种变长的Unicode编码,能够表示世界上
- 自用力扣刷题记录(Python,数组、字符串)
qq_40283123
文章目录一.数组69744844241274453最小操作次数使数组元素相等665非递减数列283移动的零118杨辉三角形119杨辉三角形2661图片平滑器598范围求和II419夹板上的战舰189旋转数组396旋转函数54螺旋矩阵59螺旋矩阵II498对角线遍历566重塑矩阵48旋转图像73矩阵置零289生命游戏303区域和检索-数组不可变304二维区域和检索-矩阵不可变238除自身以外数组的乘
- Python 进程和线程-进程 vs. 线程
赔罪
Python系统学习python开发语言
目录ThreadLocal小结进程vs.线程线程切换计算密集型vs.IO密集型异步IOThreadLocal在多线程环境下,每个线程都有自己的数据。一个线程使用自己的局部变量比使用全局变量好,因为局部变量只有线程自己能看见,不会影响其他线程,而全局变量的修改必须加锁。但是局部变量也有问题,就是在函数调用的时候,传递起来很麻烦:defprocess_student(name):std=Student
- Python----数据分析(Pandas四:一维数组Series的统计计算,分组和聚合)
蹦蹦跳跳真可爱589
数据分析Pythonpandaspython数据分析
一、统计计算1.1、count用于计算Series中非NaN(非空)值的数量。importpandasaspds=pd.Series([1,2,None,4,None])count_non_na=s.count()print(count_non_na)1.2、sumsum()函数会计算所有值的总和。Series.sum(axis=None,skipna=True,numeric_only=None
- 计算机网络:利用分组嗅探器分析传输层与网络层协议
20230921
计算机网络实验计算机网络
目录实验内容实验目的实验预备知识实验过程描述实验一:对传输层协议TCP/UDP进行捕包分析实验二:对网络层协议IP进行捕包分析实验结果实验一:对传输层协议TCP/UDP进行捕包分析结果如下:实验二:对网络层协议IP进行捕包分析结果如下实验当中问题及解决办法实验内容利用分组嗅探器分析传输层与网络层协议实验目的了解传输层TCP/UDP协议构造;了解网络层IP协议构造;实验预备知识TCP段结构UDP段结
- Python 程序 运行过程
iteye_20309
pythonc/c++数据库
一.Python解释器Python是一门编程语言,同时也是一个解释器的软件包。解释器是一种让其他程序运行起来的程序。当你编写了一段Python程序,Python解释器将读取程序,并按照其中的命令执行,得出结果。解释器是代码与计算机硬件之间的软件逻辑层。当Python包安装后,它包含了一些最小化的组件:一个解释器和支持的库。根据使用情况的不同,Python解释器可能采取可执行程序的形式,或者作为链接
- 机器学习的下一个前沿是因果推理吗?——探索机器学习的未来方向!
真智AI
人工智能机器学习
机器学习的进化:从预测到因果推理机器学习凭借强大的预测能力,已经彻底改变了多个行业。然而,要实现真正的突破,机器学习还需要克服实践和计算上的挑战,特别是在因果推理方面的应用。未来,因果推理或许将成为推动机器学习发展的新前沿。什么是因果推理,它如何与机器学习相关?如果你和我一样没有数学背景,你可能会好奇“因果推理”到底意味着什么?它与机器学习又有什么关系?当我刚开始学习机器学习时,第一次听到“因果推
- 计算机组成与设计:硬件软件接口(RISC-V版)
忧·
risc-v
第二章总结本篇主要总结RSIC-V的指令集,分别介绍不同类型的指令功能以及指令的使用示例。RISC-V指令集采用模块化设计,以书中介绍的为例,大体可将指令类型分为六种基本格式,分别为R型指令、I型指令、S型指令、B型指令、U型指令、J型指令。下面对每一种指令进行逐一介绍。R型指令(寄存器-寄存器操作)R型指令用于寄存器间的算术/逻辑运算,所有操作数均来自寄存器。下面是R型指令格式:funct7rs
- 财务管理核心知识深度剖析
阿贾克斯的黎明
基础学科学习
目录财务管理核心知识深度剖析一、财务指标计算:企业财务状况的量化洞察二、成本计算方法:企业成本管控的核心策略三、财务分析方法:解读企业财务密码的钥匙在华为财经笔试的知识体系中,第二章财务管理核心知识是重中之重,它涵盖了从基础指标计算到复杂分析方法、预算管理、资金与投资决策以及风险把控等多方面内容,对企业的财务运营和决策起着关键作用。深入理解这些知识,不仅有助于在笔试中取得优异成绩,更能为实际的财务
- RISC-V架构 vs ARM架构:硬件工程师的深度对比
ICGOODFIND1
risc-v架构arm开发
引言在嵌入式系统和处理器设计领域,RISC-V和ARM架构是两大热门选择。作为硬件工程师,了解这两种架构的优缺点以及适用场景,对于选择合适的处理器至关重要。本文将从技术特性、生态系统、开发成本和未来趋势等方面,深入对比RISC-V和ARM架构,帮助你在项目中做出更明智的决策。1.架构设计:精简vs成熟RISC-V:开源与模块化RISC-V是一种基于精简指令集计算(RISC)原则的开源指令集架构(I
- 将本地文件上传到远程Linux服务器SCP的用法
服务器文件传输工具指南:SCP与rsync一、SCP的介绍SCP命令(SecureCopy)是一个用于在服务器和本地计算机之间传输文件的命令行工具。1.核心特性基于SSH协议的安全传输支持文件/目录传输保留基础文件属性2.基础语法scp[选项]源路径目标路径3.常用操作3.1通过scp实现文件上传3.1.1单文件上传#上传文件scp./local_diruser@host:/remote_dest
- 黑客攻防从入门到精通(第一篇:认识黑客)
晓生夜梦
#黑客攻防书籍学习笔记信息安全
1.黑客:白帽,灰帽,黑帽(骇客)2.黑客术语:肉鸡(可以随意被黑客控制的计算机),木马(伪装成正常程序),网页木马(有人访问时,利用对方系统或者浏览器的漏洞自动将配置好木马的服务下载到访问者的计算机上自动执行),挂马,后门(重新控制计算机)IPC$,shell,webshell,溢出,注入,注入点免杀(用一些技术修改程序,让它逃过杀毒软件查杀),加壳花指令(让汇编语言进行一些跳转——就比如杀毒软
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite