详解SHA-256算法的原理以及C#和JS的实现

一、简介

SHA-256 是 SHA-2 下细分出的一种算法。截止目前(2023-03)未出现“碰撞”案例,被视为是绝对安全的加密算法之一。

SHA-2(安全散列算法 2:Secure Hash Algorithm 2)是一种密码散列函数算法标准,属于 SHA 算法之一,是 SHA-1 的后继者。SHA-1 算法在 2017-02-23 被谷歌发现了第一个“碰撞”案例,因此也非绝对安全。SHA-2 下不仅只有一种细分算法,总共包括六种:SHA-224、SHA-256、SHA-384、SHA-512、SHA-512/224、SHA-512/256。这些变体除了生成摘要的长度、循环运行的次数等一些微小差异外,算法的基本结构是一致的。

SHA256 其实就是一个哈希函数。哈希函数又称散列算法,是一种从任何一种数据中创建小的数字“指纹”的方法。散列函数把消息或数据压缩成摘要,使得数据量变小,将数据的格式固定下来。该函数将数据打乱混合,重新创建一个叫做散列值(或哈希值)的指纹。散列值通常用一个短的随机字母和数字组成的字符串来代表。关于哈希算法可以参考:Hash算法总结

对于任意长度的消息,SHA256 都会产生一个 256bit 长的哈希值,称作消息摘要。这个摘要相当于是个长度为 32 个字节的数组,通常用一个长度为 64 的十六进制字符串来表示。

二、C# 语言实现

// 测试
string jiamihx = SecuritySHA256.SHA256EncryptString("TestString测试"); // ede38cb25c21cea386a6b7a105a8cececfbdd10abecddd9c155a274d3baf2272
string jiamihX = SecuritySHA256.SHA256EncryptString("TestString测试", true); // EDE38CB25C21CEA386A6B7A105A8CECECFBDD10ABECDDD9C155A274D3BAF2272
byte[] jiamihbyte = SecuritySHA256.SHA256EncryptByte("TestString测试"); // byte[32]
 
using System.Security.Cryptography;
/// 
/// SHA256加密,返回字符串
/// 
/// 待加密字符串
/// false:小写 true:大写
/// 
public static string SHA256EncryptString(string deseninstr, bool isupper = false)
{
    byte[] bytes = Encoding.UTF8.GetBytes(deseninstr);
    using (var mySHA256 = SHA256Managed.Create())
    {
        byte[] hash = mySHA256.ComputeHash(bytes);
        StringBuilder builder = new StringBuilder();
        for (int i = 0; i < hash.Length; i++)
        {
            builder.Append(hash[i].ToString(isupper?"X2":"x2"));
        }
        return builder.ToString();
    }
}
/// 
/// SHA256加密,返回字节数组
/// 
/// 待加密字符串
/// 加密数组
public static Byte[] SHA256EncryptByte(string deseninstr)
{
    using (var mySHA256 = SHA256Managed.Create())
    {
        byte[] deseninbyte = Encoding.UTF8.GetBytes(deseninstr);
        byte[] EncryptBytes = mySHA256.ComputeHash(deseninbyte);
        return EncryptBytes;
    }
}

三、js 语言实现

1、引用第三方库 crypto-js 实现加密

// 引入 js 库

// npm 方式引入
>npm install crypto-js
 
// 加密操作
let encryptpk = CryptoJS.SHA256("TestString测试").toString();
console.log("加密后:",encryptpk);

2、纯 js 方式加密

// 调用方法 message() 查看测试结果
function message() {
    var data_de1 = SHA256("TestString测试", false)
    console.log(data_de1); // ede38cb25c21cea386a6b7a105a8cececfbdd10abecddd9c155a274d3baf2272
    var data_de2 = SHA256("TestString测试", true)
    console.log(data_de2); // EDE38CB25C21CEA386A6B7A105A8CECECFBDD10ABECDDD9C155A274D3BAF2272
}
 
// 纯 js 加密方法
function Sha256Encrypt(encrypt_content, isupper = false) {
    const chrsz = 8
    function safe_add(x, y) {
        const lsw = (x & 0xFFFF) + (y & 0xFFFF)
        const msw = (x >> 16) + (y >> 16) + (lsw >> 16)
        return (msw << 16) | (lsw & 0xFFFF)
    }
    function S(X, n) {
        return (X >>> n) | (X << (32 - n))
    }
    function R(X, n) {
        return (X >>> n)
    }
    function Ch(x, y, z) {
        return ((x & y) ^ ((~x) & z))
    }
    function Maj(x, y, z) {
        return ((x & y) ^ (x & z) ^ (y & z))
    }
    function Sigma0256(x) {
        return (S(x, 2) ^ S(x, 13) ^ S(x, 22))
    }
    function Sigma1256(x) {
        return (S(x, 6) ^ S(x, 11) ^ S(x, 25))
    }
    function Gamma0256(x) {
        return (S(x, 7) ^ S(x, 18) ^ R(x, 3))
    }
    function Gamma1256(x) {
        return (S(x, 17) ^ S(x, 19) ^ R(x, 10))
    }
    function core_sha256(m, l) {
        const K = [0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0xFC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x6CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2]
        const HASH = [0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19]
        const W = new Array(64)
        let a, b, c, d, e, f, g, h, i, j
        let T1, T2
        m[l >> 5] |= 0x80 << (24 - l % 32)
        m[((l + 64 >> 9) << 4) + 15] = l
        for (i = 0; i < m.length; i += 16) {
            a = HASH[0]
            b = HASH[1]
            c = HASH[2]
            d = HASH[3]
            e = HASH[4]
            f = HASH[5]
            g = HASH[6]
            h = HASH[7]
            for (j = 0; j < 64; j++) {
                if (j < 16) {
                    W[j] = m[j + i]
                } else {
                    W[j] = safe_add(safe_add(safe_add(Gamma1256(W[j - 2]), W[j - 7]), Gamma0256(W[j - 15])), W[j - 16])
                }
                T1 = safe_add(safe_add(safe_add(safe_add(h, Sigma1256(e)), Ch(e, f, g)), K[j]), W[j])
                T2 = safe_add(Sigma0256(a), Maj(a, b, c))
                h = g
                g = f
                f = e
                e = safe_add(d, T1)
                d = c
                c = b
                b = a
                a = safe_add(T1, T2)
            }
            HASH[0] = safe_add(a, HASH[0])
            HASH[1] = safe_add(b, HASH[1])
            HASH[2] = safe_add(c, HASH[2])
            HASH[3] = safe_add(d, HASH[3])
            HASH[4] = safe_add(e, HASH[4])
            HASH[5] = safe_add(f, HASH[5])
            HASH[6] = safe_add(g, HASH[6])
            HASH[7] = safe_add(h, HASH[7])
        }
        return HASH
    }
    function str2binb(str) {
        const bin = []
        const mask = (1 << chrsz) - 1
        for (let i = 0; i < str.length * chrsz; i += chrsz) {
            bin[i >> 5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i % 32)
        }
        return bin
    }
    function Utf8Encode(string) {
        string = string.replace(/\r\n/g, '\n')
        let utfText = ''
        for (let n = 0; n < string.length; n++) {
            const c = string.charCodeAt(n)
            if (c < 128) {
                utfText += String.fromCharCode(c)
            } else if ((c > 127) && (c < 2048)) {
                utfText += String.fromCharCode((c >> 6) | 192)
                utfText += String.fromCharCode((c & 63) | 128)
            } else {
                utfText += String.fromCharCode((c >> 12) | 224)
                utfText += String.fromCharCode(((c >> 6) & 63) | 128)
                utfText += String.fromCharCode((c & 63) | 128)
            }
        }
        return utfText
    }
    function binb2hex(binarray) {
        const hex_tab = isupper ? '0123456789ABCDEF' : '0123456789abcdef'
        let str = ''
        for (let i = 0; i < binarray.length * 4; i++) {
            str += hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8 + 4)) & 0xF) +
                hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8)) & 0xF)
        }
        return str
    }
    encrypt_content = Utf8Encode(encrypt_content)
    return binb2hex(core_sha256(str2binb(encrypt_content), encrypt_content.length * chrsz))
}

以上就是详解SHA-256算法的原理以及C#和JS的实现的详细内容,更多关于SHA-256算法的资料请关注脚本之家其它相关文章!

你可能感兴趣的:(详解SHA-256算法的原理以及C#和JS的实现)