redis 集群模式的工作原理及key值寻址算法

节点间的内部通信机制基本通信原理

集群元数据的维护有两种方式:集中式、Gossip 协议。redis cluster 节点间采用 gossip 协议进行通信。
集中式是将集群元数据(节点信息、故障等等)几种存储在某个节点上。集中式元数据集中存储的一个典型代表,就是大数据领域的 storm。它是分布式的大数据实时计算引擎,是集中式的元数据存储的结构,底层基于 zookeeper(分布式协调的中间件)对所有元数据进行存储维护。
redis 集群模式的工作原理及key值寻址算法_第1张图片
redis 维护集群元数据采用另一个方式, gossip 协议,所有节点都持有一份元数据,不同的节点如果出现了元数据的变更,就不断将元数据发送给其它的节点,让其它节点也进行元数据的变更。
redis 集群模式的工作原理及key值寻址算法_第2张图片
集中式的好处在于,元数据的读取和更新,时效性非常好,一旦元数据出现了变更,就立即更新到集中式的存储中,其它节点读取的时候就可以感知到;不好在于,所有的元数据的更新压力全部集中在一个地方,可能会导致元数据的存储有压力。
gossip 好处在于,元数据的更新比较分散,不是集中在一个地方,更新请求会陆陆续续打到所有节点上去更新,降低了压力;不好在于,元数据的更新有延时,可能导致集群中的一些操作会有一些滞后。
  • 10000 端口:每个节点都有一个专门用于节点间通信的端口,就是自己提供服务的端口号+10000,比如 7001,那么用于节点间通信的就是 17001 端口。每个节点每隔一段时间都会往另外几个节点发送 ping 消息,同时其它几个节点接收到 ping 之后返回 pong。
  • 交换的信息:信息包括故障信息,节点的增加和删除,hash slot 信息等等。

gossip 协议

gossip 协议包含多种消息,包含 ping,pong,meet,fail 等等。
  • meet:某个节点发送 meet 给新加入的节点,让新节点加入集群中,然后新节点就会开始与其它节点进行通信。

redis-trib.rb add-node

其实内部就是发送了一个 gossip meet 消息给新加入的节点,通知那个节点去加入我们的集群。
  • ping:每个节点都会频繁给其它节点发送 ping,其中包含自己的状态还有自己维护的集群元数据,互相通过 ping 交换元数据。
  • pong:返回 ping 和 meeet,包含自己的状态和其它信息,也用于信息广播和更新。
  • fail:某个节点判断另一个节点 fail 之后,就发送 fail 给其它节点,通知其它节点说,某个节点宕机啦。

ping 消息深入

ping 时要携带一些元数据,如果很频繁,可能会加重网络负担。
每个节点每秒会执行 10 次 ping,每次会选择 5 个最久没有通信的其它节点。当然如果发现某个节点通信延时达到了 cluster_node_timeout / 2,那么立即发送 ping,避免数据交换延时过长,落后的时间太长了。比如说,两个节点之间都 10 分钟没有交换数据了,那么整个集群处于严重的元数据不一致的情况,就会有问题。所以 cluster_node_timeout 可以调节,如果调得比较大,那么会降低 ping 的频率。
每次 ping,会带上自己节点的信息,还有就是带上 1/10 其它节点的信息,发送出去,进行交换。至少包含 3 个其它节点的信息,最多包含 总节点数减 2 个其它节点的信息。

分布式寻址算法

  • hash 算法(大量缓存重建)
  • 一致性 hash 算法(自动缓存迁移)+ 虚拟节点(自动负载均衡)
  • redis cluster 的 hash slot 算法

hash 算法

来了一个 key,首先计算 hash 值,然后对节点数取模。然后打在不同的 master 节点上。一旦某一个 master 节点宕机,所有请求过来,都会基于最新的剩余 master 节点数去取模,尝试去取数据。这会导致大部分的请求过来,全部无法拿到有效的缓存,导致大量的流量涌入数据库。
 
redis 集群模式的工作原理及key值寻址算法_第3张图片

一致性 hash 算法

一致性 hash 算法将整个 hash 值空间组织成一个虚拟的圆环,整个空间按顺时针方向组织,下一步将各个 master 节点(使用服务器的 ip 或主机名)进行 hash。这样就能确定每个节点在其哈希环上的位置。
来了一个 key,首先计算 hash 值,并确定此数据在环上的位置,从此位置沿环顺时针“行走”,遇到的第一个 master 节点就是 key 所在位置。
在一致性哈希算法中,如果一个节点挂了,受影响的数据仅仅是此节点到环空间前一个节点(沿着逆时针方向行走遇到的第一个节点)之间的数据,其它不受影响。增加一个节点也同理。
燃鹅,一致性哈希算法在节点太少时,容易因为节点分布不均匀而造成缓存热点的问题。为了解决这种热点问题,一致性 hash 算法引入了虚拟节点机制,即对每一个节点计算多个 hash,每个计算结果位置都放置一个虚拟节点。这样就实现了数据的均匀分布,负载均衡。
 
redis 集群模式的工作原理及key值寻址算法_第4张图片

redis cluster 的 hash slot 算法

redis cluster 有固定的 16384 个 hash slot,对每个 key 计算 CRC16 值,然后对 16384 取模,可以获取 key 对应的 hash slot。
redis cluster 中每个 master 都会持有部分 slot,比如有 3 个 master,那么可能每个 master 持有 5000 多个 hash slot。hash slot 让 node 的增加和移除很简单,增加一个 master,就将其他 master 的 hash slot 移动部分过去,减少一个 master,就将它的 hash slot 移动到其他 master 上去。移动 hash slot 的成本是非常低的。客户端的 api,可以对指定的数据,让他们走同一个 hash slot,通过 hash tag 来实现。
任何一台机器宕机,另外两个节点,不影响的。因为 key 找的是 hash slot,不是机器。
 
redis 集群模式的工作原理及key值寻址算法_第5张图片

redis cluster 的高可用与主备切换原理

redis cluster 的高可用的原理,几乎跟哨兵是类似的。

判断节点宕机

如果一个节点认为另外一个节点宕机,那么就是 pfail,主观宕机。如果多个节点都认为另外一个节点宕机了,那么就是 fail,客观宕机,跟哨兵的原理几乎一样,sdown,odown。
在 cluster-node-timeout 内,某个节点一直没有返回 pong,那么就被认为 pfail。
如果一个节点认为某个节点 pfail 了,那么会在 gossip ping 消息中,ping 给其他节点,如果超过半数的节点都认为 pfail 了,那么就会变成 fail。

从节点过滤

对宕机的 master node,从其所有的 slave node 中,选择一个切换成 master node。
检查每个 slave node 与 master node 断开连接的时间,如果超过了 cluster-node-timeout * cluster-slave-validity-factor,那么就没有资格切换成 master。

从节点选举

每个从节点,都根据自己对 master 复制数据的 offset,来设置一个选举时间,offset 越大(复制数据越多)的从节点,选举时间越靠前,优先进行选举。
所有的 master node 开始 slave 选举投票,给要进行选举的 slave 进行投票,如果大部分 master node(N/2 + 1)都投票给了某个从节点,那么选举通过,那个从节点可以切换成 master。
从节点执行主备切换,从节点切换为主节点。

与哨兵比较

整个流程跟哨兵相比,非常类似,所以说,redis cluster 功能强大,直接集成了 replication 和 sentinel 的功能。

你可能感兴趣的:(redis 集群模式的工作原理及key值寻址算法)