一、背景介绍
近一年内对公司的 ELK 日志系统做过性能优化,也对 SkyWalking 使用的 ES 存储进行过性能优化,在此做一些总结。本篇主要是讲 ES 在 ELK 架构中作为日志存储时的性能优化方案。
ELK 架构作为日志存储方案
二、现状分析
1. 版本及硬件配置
- JDK:JDK1.8_171-b11 (64位)
- ES集群:由3台16核32G的虚拟机部署 ES 集群,每个节点分配20G堆内存
- ELK版本:6.3.0
- 垃圾回收器:ES 默认指定的老年代(CMS)+ 新生代(ParNew)
- 操作系统:CentOS Linux release 7.4.1708(Core)
2. 性能问题
随着接入ELK的应用越来越多,每日新增索引约 230 个,新增 document 约 3000万到 5000万。
每日上午和下午是日志上传高峰期,在 Kibana 上查看日志,发现问题:
(1) 日志会有 5-40 分钟的延迟
(2) 有很多日志丢失,无法查到
3. 问题分析
3.1 日志延迟
首先了解清楚:数据什么时候可以被查到?
数据先是存放在 ES 的内存 buffer,然后执行 refresh 操作写入到操作系统的内存缓存 os cache,此后数据就可以被搜索到。
所以,日志延迟可能是我们的数据积压在 buffer 中没有进入 os cache 。
3.2日志丢失
查看日志发现很多 write 拒绝执行的情况
从日志中可以看出 ES 的 write 线程池已经满负荷,执行任务的线程已经达到最大16个线程,而200容量的队列也已经放不下新的task。
查看线程池的情况也可以看出 write 线程池有很多写入的任务
GET /_cat/thread_pool?v&h=host,name,type,size,active,largest,rejected,completed,queue,queue_size
所以我们需要优化 ES 的 write 的性能。
4.解决思路
4.1 分析场景
ES 的优化分为很多方面,我们要根据使用场景考虑对 ES 的要求。
根据个人实践经验,列举三种不同场景下的特点:
- SkyWalking:一般配套使用ES作为数据存储,存储链路追踪数据、指标数据等信息。
- ELK:一般用来存储系统日志,并进行分析,搜索,定位应用的问题。
- 全文搜索的业务:业务中常用 ES 作为全文搜索引擎,例如在外卖应用中,ES 用来存储商家、美食的业务数据,用户在客户端可以根据关键字、地理位置等查询条件搜索商家、美食信息。
这三类场景的特点如下:
SkyWalking | ELK | 全文搜索的业务 | |
---|---|---|---|
并发写 | 高并发写 | 高并发写 | 并发一般不高 |
并发读 | 并发低 | 并发低 | 并发高 |
实时性要求 | 2分钟以内 | 30秒以内 | 1分钟内 |
数据完整性 | 可容忍丢失少量数据 | 可容忍丢失少量数据 | 数据尽量100%不丢失 |
关于实时性
- SkyWalking 在实际使用中,一般使用频率不太高,往往是发现应用的问题后,再去 SkyWalking 查历史链路追踪数据或指标数据,所以可以接受几分钟的延迟。
- ELK 不管是开发、测试等阶段,时常用来定位应用的问题,如果不能快速查询出数据,延迟太久,会耽误很多时间,大大降低工作效率;如果是查日志定位生产问题,那更是刻不容缓。
- 全文搜索的业务中一般可以接受在1分钟内查看到最新数据,比如新商品上架一分钟后才看到,但尽量实时,在几秒内可以可看到。
4.2 优化的方向
可以从三方面进行优化:JVM性能调优、ES性能调优、控制数据来源
三、ES性能优化
可以从三方面进行优化:JVM 性能调优、ES 性能调优、控制数据来源
1. JVM调优
第一步是 JVM 调优。
因为 ES 是依赖于 JVM 运行,没有合理的设置 JVM 参数,将浪费资源,甚至导致 ES 很容易 OOM 而崩溃。
1.1 监控 JVM 运行情况
(1) 查看 GC 日志
问题:Young GC 和 Full GC 都很频繁,特别是 Young GC 频率高,累积耗时非常多。
(2) 使用 jstat 看下每秒的 GC 情况
参数说明
- S0:幸存1区当前使用比例
- S1:幸存2区当前使用比例
- E:伊甸园区使用比例
- O:老年代使用比例
- M:元数据区使用比例
- CCS:压缩使用比例
- YGC:年轻代垃圾回收次数
- FGC:老年代垃圾回收次数
- FGCT:老年代垃圾回收消耗时间
- GCT:垃圾回收消耗总时间
问题:从 jstat gc 中也可以看出,每秒的 eden 增长速度非常快,很快就满了。
1.2 定位 Young GC 频繁的原因
1.2.1 检查是否新生代的空间是否太小
用下面几种方式都可查看新、老年代内存大小
(1) 使用 jstat -gc pid 查看 Eden 区、老年代空间大小
(2) 使用 jmap -heap pid 查看 Eden 区、老年代空间大小
(3) 查看 GC 日志中的 GC 明细
其中 996800K 为新生代可用空间大小,即 Eden 区+1个 Survivor 区的空间大小,所以新生代总内存是996800K/0.9, 约1081M
上面的几种方式都查询出,新生代总内存约1081M,即1G左右;老年代总内存为19864000K,约19G。新、老比例约1:19,出乎意料。
1.2.1 新老年代空间比例为什么不是 JDK 默认的1:2【重点!】
这真是一个容易踩坑的地方。
如果没有显示设置新生代大小,JVM 在使用 CMS 收集器时会自动调参,新生代的大小在没有设置的情况下是通过计算得出的,其大小可能与 NewRatio 的默认配置没什么关系而与 ParallelGCThreads 的配置有一定的关系。
参考:CMS GC 默认新生代是多大?
所以:新生代大小有不确定性,最好配置 JVM 参数 -XX:NewSize、-XX:MaxNewSize 或者 -xmn ,免得遇到一些奇怪的 GC,让人措手不及。
1.3 上面现象造成的影响
新生代过小,老年代过大的影响
- 新生代过小:
(1) 会导致新生代 Eden 区很快用完,而触发 Young GC,Young GC 的过程中会 STW(Stop The World),也就是所有工作线程停止,只有 GC 的线程在进行垃圾回收,这会导致 ES 短时间停顿。频繁的 Young GC,积少成多,对系统性能影响较大。
(2) 大部分对象很快进入老年代,老年代很容易用完而触发 Full GC。 - 老年代过大:会导致 Full GC 的执行时间过长,Full GC 虽然有并行处理的步骤,但是还是比 Young GC 的 STW 时间更久,而 GC 导致的停顿时间在几十毫秒到几秒内,很影响 ES 的性能,同时也会导致请求 ES 服务端的客户端在一定时间内没有响应而发生 timeout 异常,导致请求失败。
1.4 JVM优化
1.4.1 配置堆内存空间大小
32G 的内存,分配 20G 给堆内存是不妥当的,所以调整为总内存的50%,即16G。
修改 elasticsearch 的 jvm.options 文件
-Xms16g
-Xmx16g
设置要求:
-
Xms 与 Xmx 大小相同。
在 jvm 的参数中 -Xms 和 -Xmx 设置的不一致,在初始化时只会初始 -Xms 大小的空间存储信息,每当空间不够用时再向操作系统申请,这样的话必然要进行一次 GC,GC会带来 STW。而剩余空间很多时,会触发缩容。再次不够用时再扩容,如此反复,这些过程会影响系统性能。同理在 MetaSpace 区也有类似的问题。
jvm 建议不要超过 32G,否则 jvm 会禁用内存对象指针压缩技术,造成内存浪费
-
Xmx 和 Xms 不要超过物理 RAM 的50%。 参考:官方堆内存设置的建议
Xmx 和 Xms 不要超过物理内存的50%。Elasticsearch 需要内存用于JVM堆以外的其他用途,为此留出空间非常重要。例如,Elasticsearch 使用堆外缓冲区进行有效的网络通信,依靠操作系统的文件系统缓存来高效地访问文件,而 JVM 本身也需要一些内存。
1.4.2 配置堆内存新生代空间大小
因为指定新生代空间大小,导致 JVM 自动调参只分配了 1G 内存给新生代。
修改 elasticsearch 的 jvm.options 文件,加上
-XX:NewSize=8G
-XX:MaxNewSize=8G
老年代则自动分配 16G-8G=8G 内存,新生代老年代的比例为 1:1。修改后每次 Young GC 频率更低,且每次 GC 后只有少数数据会进入老年代。
2.3 使用G1垃圾回收器(未实践)
G1垃圾回收器让系统使用者来设定垃圾回收堆系统的影响,然后把内存拆分为大量的小 Region,追踪每个 Region 中可以回收的对象大小和回收完成的预计花费的时间, 最后在垃圾回收的时候,尽量把垃圾回收对系统造成的影响控制在我们指定的时间范围内,同时在有限的时间内尽量回收更多的垃圾对象。
G1垃圾回收器一般在大数量、大内存的情况下有更好的性能。
ES默认使用的垃圾回收器是:老年代(CMS)+ 新生代(ParNew)。如果是JDK1.9,ES 默认使用G1垃圾回收器。
因为使用的是 JDK1.8,所以并未切换垃圾回收器。后续如果再有性能问题再切换G1垃圾回收器,测试是否有更好的性能。
1.5 优化的效果
1.5.1 新生代使用内存的增长率更低
优化前
每秒打印一次 GC 数据。可以看出,年轻代增长速度很快,几秒钟年轻代就满了,导致 Young GC 触发很频繁,几秒钟就会触发一次。而每次 Young GC 很大可能有存活对象进入老年代,而且,存活对象多的时候(看上图中第一个红框中的old gc数据),有(51.44-51.08)/100 * 19000M = 约68M。每次进入老年代的对象较多,加上频繁的 Young GC,会导致新老年代的分代模式失去了作用,相当于老年代取代了新生代来存放近期内生成的对象。当老年代满了,触发 Full GC,存活的对象也会很多,因为这些对象很可能还是近期加入的,还存活着,所以一次 Full GC 回收对象不多。而这会恶性循环,老年代很快又满了,又 Full GC,又残留一大部分存活的,又很容易满了,所以导致一直频繁 Full GC。
优化后
每秒打印一次 GC 数据。可以看出,新生代增长速度慢了许多,至少要60秒才会满,如上图红框中数据,进入老年代的对象约(15.68-15.60)/100 * 10000 = 8M,非常的少。所以要很久才会触发一次 Full GC 。而且等到 Full GC 时,老年代里很多对象都是存活了很久的,一般都是不会被引用,所以很大一部分会被回收掉,留一个比较干净的老年代空间,可以继续放很多对象。
1.5.2 新生代和老年代 GC 频率更低
ES 启动后,运行14个小时
优化前
Young GC 每次的时间是不长的,从上面监控数据中可以看出每次GC时长 1467.995/27276 约等于 0.05秒。那一秒钟有多少时间实在处理Young GC ? 计算公式:1467秒/(60秒×60分14小时)= 约0.028秒,也就是100秒中就有2.8秒在Young GC,也就是有2.8S的停顿,这对性能还是有很大消耗的。同时也可以算出多久一次Young GC, 方程是: 60秒×60分*14小时/ 27276次 = 1次/X秒,计算得出X = 0.54,也就是0.54秒就会有一次Young GC,可见 Young GC 频率非常频繁。
优化后
Young GC 次数只有修改前的十分之一,Young GC 时间也是约八分之一。Full GC 的次数也是只有原来的八分之一,GC 时间大约是四分之一。
GC 对系统的影响大大降低,性能已经得到很大的提升。
2.ES调优
上面已经分析过ES作为日志存储时的特性是:高并发写、读少、接受30秒内的延时、可容忍部分日志数据丢失。
下面我们针对这些特性对ES进行调优。
2.1 优化 ES 索引设置
2.2.1 ES 写数据底层原理
本人整理了一下数据写入的底层原理
refresh
ES 接收数据请求时先存入 ES 的内存中,默认每隔一秒会从内存 buffer 中将数据写入操作系统缓存 os cache,这个过程叫做 refresh;
到了 os cache 数据就能被搜索到(所以我们才说 ES 是近实时的,因为1s 的延迟后执行 refresh 便可让数据被搜索到)
fsync
translog 会每隔5秒或者在一个变更请求完成之后执行一次 fsync 操作,将 translog 从缓存刷入磁盘,这个操作比较耗时,如果对数据一致性要求不是跟高时建议将索引改为异步,如果节点宕机时会有5秒数据丢失;
flush
ES 默认每隔30分钟会将 os cache 中的数据刷入磁盘同时清空 translog 日志文件,这个过程叫做 flush。
merge
ES 的一个 index 由多个 shard 组成,而一个 shard 其实就是一个 Lucene 的 index ,它又由多个 segment 组成,且 Lucene 会不断地把一些小的 segment 合并成一个大的 segment ,这个过程被称为段merge。执行索引操作时,ES会先生成小的segment,ES 有离线的逻辑对小的 segment 进行合并,优化查询性能。但是合并过程中会消耗较多磁盘 IO,会影响查询性能。
2.2.2 优化方向
2.2.2.1 优化 fsync
为了保证不丢失数据,就要保护 translog 文件的安全:
Elasticsearch 2.0 之后, 每次写请求(如 index 、delete、update、bulk 等)完成时, 都会触发
fsync
将 translog 中的 segment 刷到磁盘, 然后才会返回200 OK
的响应;或者: 默认每隔5s就将 translog 中的数据通过
fsync
强制刷新到磁盘.
该方式提高数据安全性的同时, 降低了一点性能.
==> 频繁地执行fsync
操作, 可能会产生阻塞导致部分操作耗时较久. 如果允许部分数据丢失, 可设置异步刷新 translog 来提高效率,还有降低 flush 的阀值,优化如下:
"index.translog.durability": "async",
"index.translog.flush_threshold_size":"1024mb",
"index.translog.sync_interval": "120s"
2.2.2.2 优化 refresh
写入 Lucene 的数据,并不是实时可搜索的,ES 必须通过 refresh 的过程把内存中的数据转换成 Lucene 的完整 segment 后,才可以被搜索。
默认1秒后,写入的数据可以很快被查询到,但势必会产生大量的 segment,检索性能会受到影响。所以,加大时长可以降低系统开销。对于日志搜索来说,实时性要求不是那么高,设置为5秒或者10s;对于SkyWalking,实时性要求更低一些,我们可以设置为30s。
设置如下:
"index.refresh_interval":"5s"
2.2.2.3 优化 merge
index.merge.scheduler.max_thread_count 控制并发的 merge 线程数,如果存储是并发性能较好的 SSD,可以用系统默认的 max(1, min(4, availableProcessors / 2)),当节点配置的 cpu 核数较高时,merge 占用的资源可能会偏高,影响集群的性能,普通磁盘的话设为1,发生磁盘 IO 堵塞。设置max_thread_count 后,会有 max_thread_count + 2 个线程同时进行磁盘操作,也就是设置为 1 允许3个线程。
设置如下:
"index.merge.scheduler.max_thread_count":"1"
2.2.2 优化设置
2.2.2.1 对现有索引做索引设置
# 需要先 close 索引,然后再执行,最后成功之后再打开
# 关闭索引
curl -XPOST 'http://localhost:9200/_all/_close'
# 修改索引设置
curl -XPUT -H "Content-Type:application/json" 'http://localhost:9200/_all/_settings?preserve_existing=true' -d '{"index.merge.scheduler.max_thread_count" : "1","index.refresh_interval" : "10s","index.translog.durability" : "async","index.translog.flush_threshold_size":"1024mb","index.translog.sync_interval" : "120s"}'
# 打开索引
curl -XPOST 'http://localhost:9200/_all/_open'
该方式可对已经生成的索引做修改,但是对于后续新建的索引不生效,所以我们可以制作 ES 模板,新建的索引按模板创建索引。
2.2.2.2 制作索引模板
# 制作模板 大部分索引都是业务应用的日志相关的索引,且索引名称是 202* 这种带着日期的格式
PUT _template/business_log
{
"index_patterns": ["*202*.*.*"],
"settings": {
"index.merge.scheduler.max_thread_count" : "1","index.refresh_interval" : "5s","index.translog.durability" : "async","index.translog.flush_threshold_size":"1024mb","index.translog.sync_interval" : "120s"}
}
# 查询模板是否创建成功
GET _template/business_log
因为我们的业务日志是按天维度创建索引,索引名称示例:user-service-prod-2020.12.12,所以用通配符202..*匹配对应要创建的业务日志索引。
2.2 优化线程池配置
前文已经提到过,write 线程池满负荷,导致拒绝任务,而有的数据无法写入。
而经过上面的优化后,拒绝的情况少了很多,但是还是有拒绝任务的情况。
所以我们还需要优化write线程池。
从 prometheus 监控中可以看到线程池的情况:
为了更直观看到ES线程池的运行情况,我们安装了 elasticsearch_exporter 收集 ES 的指标数据到 prometheus,再通过 grafana 进行查看。
经过上面的各种优化,拒绝的数据量少了很多,但是还是存在拒绝的情况,如下图:
write 线程池如何设置:
参考:ElasticSearch线程池
write
For single-document index/delete/update and bulk requests. Thread pool type is
fixed
with a size of# of available processors
, queue_size of200
. The maximum size for this pool is1 + # of available processors
.
write 线程池采用 fixed 类型的线程池,也就是核心线程数与最大线程数值相同。线程数默认等于 cpu 核数,可设置的最大值只能是 cpu 核数加1,也就是16核CPU,能设置的线程数最大值为17。
优化的方案:
- 线程数改为17,也就是 cpu 总核数加1
- 队列容量加大。队列在此时的作用是消峰。不过队列容量加大本身不会提升处理速度,只是起到缓冲作用。此外,队列容量也不能太大,否则积压很多任务时会占用过多堆内存。
config/elasticsearch.yml文件增加配置
# 线程数设置
thread_pool:
write:
# 线程数默认等于cpu核数,即16
size: 17
# 因为任务多时存在任务拒绝的情况,所以加大队列大小,可以在间歇性任务量陡增的情况下,缓存任务在队列,等高峰过去逐步消费完。
queue_size: 10000
优化后效果
可以看到,已经没有拒绝的情况,这样也就是解决了日志丢失的问题。
2.3 锁定内存,不让 JVM 使用 Swap
Swap 交换分区:
Swap 分区通常被称为交换分区,这是一块特殊的硬盘空间,即当物理内存不够用的时候,操作系统会从物理内存中取出一部分暂时不用的数据,放在交换分区中,从而为当前运行的程序腾出足够的内存空间。也就是当物理内存不够用时,用磁盘来顶替物理内存。
优点是:通过操作系统的调度,应用程序实际可以使用的内存空间将远远超过系统的物理内存。由于硬盘空间的价格远比 RAM 要低,因此这种方式无疑是经济实惠的。
缺点是:频繁地读写硬盘,会显著降低操作系统的运行速率,这也是使用 swap 交换分区最大的限制。
参考:ElasticSearch官方解释为什么要禁用交换内存
Swap 交换分区对性能和节点稳定性非常不利,一定要禁用。它会导致垃圾回收持续几分钟而不是几毫秒,并会导致节点响应缓慢,甚至与集群断开连接。
有三种方式可以实现 ES 不使用Swap分区
2.3.1 Linux 系统中的关闭 Swap (临时有效)
执行命令
sudo swapoff -a
可以临时禁用 Swap 内存,但是操作系统重启后失效
2.3.2 Linux 系统中的尽可能减少 Swap 的使用(永久有效)
执行下列命令
echo "vm.swappiness = 1">> /etc/sysctl.conf
正常情况下不会使用 Swap,除非紧急情况下才会 Swap。
2.3.3 启用 bootstrap.memory_lock
config/elasticsearch.yml 文件增加配置
#锁定内存,不让 JVM 写入 Swap,避免降低 ES 的性能
bootstrap.memory_lock: true
2.4 减少分片数、副本数
分片
索引的大小取决于分片与段的大小,分片过小,可能导致段过小,进而导致开销增加;分片过大可能导致分片频繁 Merge,产生大量 IO 操作,影响写入性能。
因为我们每个索引的大小在15G以下,而默认是5个分片,没有必要这么多,所以调整为3个。
"index.number_of_shards": "3"
分片的设置我们也可以配置在索引模板。
副本数
减少集群副本分片数,过多副本会导致 ES 内部写扩大。副本数默认为1,如果某索引所在的1个节点宕机,拥有副本的另一台机器拥有索引备份数据,可以让索引数据正常使用。但是数据写入副本会影响写入性能。对于日志数据,有1个副本即可。对于大数据量的索引,可以设置副本数为0,减少对性能的影响。
"index.number_of_replicas": "1"
分片的设置我们也可以配置在索引模板。
3.控制数据来源
3.1 应用按规范打印日志
有的应用1天生成10G日志,而一般的应用只有几百到1G。一天生成10G日志一般是因为部分应用日志使用不当,很多大数量的日志可以不打,比如大数据量的列表查询接口、报表数据、debug 级别日志等数据是不用上传到日志服务器,这些即影响日志存储的性能,更影响应用自身性能。
四、ES性能优化后的效果
优化后的两周内ELK性能良好,没有使用上的问题:
ES 数据不再丢失
数据延时在10秒之内,一般在5秒可以查出
-
每个 ES 节点负载比较稳定,CPU 和内存使用率都不会过高,如下图
五、参考文档
参考
记一次 ElasticSearch 优化总结
ElasticSearch 的数据写入流程及优化
百亿级实时计算系统性能优化–—ElasticSearch篇