本地事务,也就是传统的单机事务。在传统数据库事务中,必须要满足四个原则:
分布式事务,就是指不是在单个服务或单个数据库架构下,产生的事务,例如:
在数据库水平拆分、服务垂直拆分之后,一个业务操作通常要跨多个数据库、服务才能完成。例如电商行业中比较常见的下单付款案例,包括下面几个行为:
订单的创建、库存的扣减、账户扣款在每一个服务和数据库内是一个本地事务,可以保证ACID原则。
但是当我们把三件事情看做一个"业务",要满足保证“业务”的原子性,要么所有操作全部成功,要么全部失败,不允许出现部分成功部分失败的现象,这就是分布式系统下的事务了。
此时ACID难以满足,这是分布式事务要解决的问题
我们通过一个案例来演示分布式事务的问题:
1)创建数据库,名为seata_demo,然后导入课前资料提供的SQL文件:
2)导入课前资料提供的微服务:
微服务结构如下:
其中:
seata-demo:父工程,负责管理项目依赖
3)启动nacos、所有微服务
4)测试下单功能,发出Post请求:
先尝试扣减成功的情况
postMan输入
http://localhost:8082/order?userId=user202103032042012&commodityCode=100202003032041&count=2&money=200
点击send后发现返回200
查看数据库,订单表,产生数量是2的订单
库存表库存从10变为了8
个人余额从1000变成了800
再尝试扣减失败的情况
请求如下:
在postman中访问
http://localhost:8082/order?userId=user202103032042012&commodityCode=100202003032041&count=10&money=200
看下数据库,个人账户从800竟然变成了600,这明显是有问题的
测试发现,当库存不足时,如果余额已经扣减,并不会回滚,出现了分布式事务问题。
分布式服务的事务问题
在分布式系统下,一个业务跨越多个服务或数据源,每个服务都是一个分支事务, 要保证所有分支事务最终状态一致,这样的事务就是分布式事务。
解决分布式事务问题,需要一些分布式系统的基础知识作为理论指导。
1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标。
- Consistency(一致性)
- Availability(可用性)
- Partition tolerance (分区容错性)
Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理。
Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致。
比如现在包含两个节点,其中的初始数据是一致的:
当我们修改其中一个节点的数据时,两者的数据产生了差异:
要想保住一致性,就必须实现node01 到 node02的数据 同步:
Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。
如图,有三个节点的集群,访问任何一个都可以及时得到响应:
当有部分节点因为网络故障或其它原因无法访问时,代表节点不可用:
解决方案:在node3节点没恢复网络之前,所有访问node3的请求全都阻塞住,等到网络恢复后,再进行数据同步和请求响应。
问题:在网络恢复前,无法保证可用性,响应都阻塞了。这说明了,想要保证一致性,却牺牲了可用性。
Partition(分区):因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区。
Tolerance(容错):在集群出现分区时,整个系统也要持续对外提供服务
在分布式系统中,系统间的网络不能100%保证健康,一定会有故障的时候,而服务有必须对外保证服务。因此Partition Tolerance不可避免。
如果此时要保证一致性,就必须等待网络恢复,完成数据同步后,整个集群才对外提供服务,服务处于阻塞状态,不可用。
如果此时要保证可用性,就不能等待网络恢复,那node01、node02与node03之间就会出现数据不一致。
也就是说,在P一定会出现的情况下,A和C之间只能实现一个。
总结:
简述CAP定理内容?
● 分布式系统节点通过网络连接,一定会出现分区问题§
● 当分区出现时,系统的一致性©和可用性(A)就无法同时满足
思考: elasticsearch集群 是CP还是AP?
答:CP
ES集群出现分区时,故障节点会被剔除集群,数据分片会重新分配到其它节点,保证数据一致。因此是低可用性,高一致性,属于CP
BASE理论是对CAP的一种解决思路,包含三个思想:
分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论,有两种解决思路:
AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致。
CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。
但不管是哪一种模式,都需要在子系统事务之间互相通讯,协调事务状态,也就是需要一个事务协调者(TC):
这里的子系统事务,称为分支事务;有关联的各个分支事务在一起称为全局事务。
总结:
简述BASE理论三个思想:
● 基本可用
● 软状态
● 最终一致
解决分布式事务的思想和模型:
Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。致力于提供高性能和简单易用的分布式事务服务,为用户打造一站式的分布式解决方案。
官网地址:http://seata.io/,其中的文档、播客中提供了大量的使用说明、源码分析。
Seata事务管理中有三个重要的角色:
TC (Transaction Coordinator) - **事务协调者:**维护全局和分支事务的状态,协调全局事务提交或回滚。
TM (Transaction Manager) - **事务管理器:**定义全局事务的范围、开始全局事务、提交或回滚全局事务。
RM (Resource Manager) - **资源管理器:**管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。
Seata基于上述架构提供了四种不同的分布式事务解决方案:
无论哪种方案,都离不开TC,也就是事务的协调者。
参考课前资料提供的文档《 seata的部署和集成.md 》:
seata的部署和集成
首先我们要下载seata-server包,地址在http/seata.io/zh-cn/blog/download.html
内容如下:
registry {
# tc服务的注册中心类,这里选择nacos,也可以是eureka、zookeeper等
type = "nacos"
nacos {
# seata tc 服务注册到 nacos的服务名称,可以自定义
application = "seata-tc-server"
serverAddr = "127.0.0.1:8848"
group = "DEFAULT_GROUP"
namespace = ""
cluster = "SH"
username = "nacos"
password = "nacos"
}
}
config {
# 读取tc服务端的配置文件的方式,这里是从nacos配置中心读取,这样如果tc是集群,可以共享配置
type = "nacos"
# 配置nacos地址等信息
nacos {
serverAddr = "127.0.0.1:8848"
namespace = ""
group = "SEATA_GROUP"
username = "nacos"
password = "nacos"
dataId = "seataServer.properties"
}
}
• group = “DEFAULT_GROUP” :与Nacos中分组一致
特别注意,为了让tc服务的集群可以共享配置,我们选择了nacos作为统一配置中心。因此服务端配置文件seataServer.properties文件需要在nacos中配好。
格式如下:
DataID: seataServer.properties
Group:DEFAULT_GROUP
配置格式:Properties
配置内容如下:
# 数据存储方式,db代表数据库
store.mode=db
store.db.datasource=druid
store.db.dbType=mysql
store.db.driverClassName=com.mysql.jdbc.Driver
store.db.url=jdbc:mysql://127.0.0.1:3306/seata_tc?useUnicode=true&rewriteBatchedStatements=true
store.db.user=root
store.db.password=123
store.db.minConn=5
store.db.maxConn=30
store.db.globalTable=global_table
store.db.branchTable=branch_table
store.db.queryLimit=100
store.db.lockTable=lock_table
store.db.maxWait=5000
# 事务、日志等配置
server.recovery.committingRetryPeriod=1000
server.recovery.asynCommittingRetryPeriod=1000
server.recovery.rollbackingRetryPeriod=1000
server.recovery.timeoutRetryPeriod=1000
server.maxCommitRetryTimeout=-1
server.maxRollbackRetryTimeout=-1
server.rollbackRetryTimeoutUnlockEnable=false
server.undo.logSaveDays=7
server.undo.logDeletePeriod=86400000
# 客户端与服务端传输方式
transport.serialization=seata
transport.compressor=none
# 关闭metrics功能,提高性能
metrics.enabled=false
metrics.registryType=compact
metrics.exporterList=prometheus
metrics.exporterPrometheusPort=9898
其中的数据库地址、用户名、密码都需要修改成你自己的数据库信息。
特别注意:tc服务在管理分布式事务时,需要记录事务相关数据到数据库中,你需要提前创建好这些表。
新建一个名为seata_tc的数据库,运行课前资料提供的sql文件:
这里数据库名称和上面nacos中配置文件的数据库名称一致即可
这些表主要记录全局事务、分支事务、全局锁信息:
SET NAMES utf8mb4;
SET FOREIGN_KEY_CHECKS = 0;
-- ----------------------------
-- 分支事务表
-- ----------------------------
DROP TABLE IF EXISTS `branch_table`;
CREATE TABLE `branch_table` (
`branch_id` bigint(20) NOT NULL,
`xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
`transaction_id` bigint(20) NULL DEFAULT NULL,
`resource_group_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`branch_type` varchar(8) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`status` tinyint(4) NULL DEFAULT NULL,
`client_id` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`gmt_create` datetime(6) NULL DEFAULT NULL,
`gmt_modified` datetime(6) NULL DEFAULT NULL,
PRIMARY KEY (`branch_id`) USING BTREE,
INDEX `idx_xid`(`xid`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;
-- ----------------------------
-- 全局事务表
-- ----------------------------
DROP TABLE IF EXISTS `global_table`;
CREATE TABLE `global_table` (
`xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
`transaction_id` bigint(20) NULL DEFAULT NULL,
`status` tinyint(4) NOT NULL,
`application_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`transaction_service_group` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`transaction_name` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`timeout` int(11) NULL DEFAULT NULL,
`begin_time` bigint(20) NULL DEFAULT NULL,
`application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`gmt_create` datetime NULL DEFAULT NULL,
`gmt_modified` datetime NULL DEFAULT NULL,
PRIMARY KEY (`xid`) USING BTREE,
INDEX `idx_gmt_modified_status`(`gmt_modified`, `status`) USING BTREE,
INDEX `idx_transaction_id`(`transaction_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;
SET FOREIGN_KEY_CHECKS = 1;
进入bin目录,运行其中的seata-server.bat即可:
默认端口是8091
启动成功后,seata-server应该已经注册到nacos注册中心了。
打开浏览器,访问nacos地址:http://localhost:8848,然后进入服务列表页面,可以看到seata-tc-server的信息:
点击进去看到详情
首先,我们需要在微服务中引入seata依赖:
参与微服务的所有模块pom.xml都要加上
<properties>
<seata.version>1.4.2seata.version>
properties>
<dependency>
<groupId>com.alibaba.cloudgroupId>
<artifactId>spring-cloud-starter-alibaba-seataartifactId>
<exclusions>
<exclusion>
<artifactId>seata-spring-boot-starterartifactId>
<groupId>io.seatagroupId>
exclusion>
exclusions>
dependency>
<dependency>
<groupId>io.seatagroupId>
<artifactId>seata-spring-boot-starterartifactId>
<version>${seata.version}version>
dependency>
需要修改application.yml文件,添加一些配置:
把所有服务模块的application.yml文件都修改一下
seata:
registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址
# 参考tc服务自己的registry.conf中的配置
type: nacos
nacos: # tc
server-addr: 127.0.0.1:8848
namespace: ""
group: DEFAULT_GROUP
application: seata-tc-server # tc服务在nacos中的服务名称
username: nacos
password: nacos
tx-service-group: seata-demo # 事务组,根据这个获取tc服务的cluster名称
service:
vgroup-mapping: # 事务组与TC服务cluster的映射关系
seata-demo: SH
配置好之后,重启服务即可,看到seata中显示RM register success即成功了
计划启动两台seata的tc服务节点:
节点名称 | ip地址 | 端口号 | 集群名称 |
---|---|---|---|
seata | 127.0.0.1 | 8091 | SH |
seata2 | 127.0.0.1 | 8092 | HZ |
之前我们已经启动了一台seata服务,端口是8091,集群名为SH。
现在,将seata目录复制一份,起名为seata2
修改seata2/conf/registry.conf内容如下:
registry {
# tc服务的注册中心类,这里选择nacos,也可以是eureka、zookeeper等
type = "nacos"
nacos {
# seata tc 服务注册到 nacos的服务名称,可以自定义
application = "seata-tc-server"
serverAddr = "127.0.0.1:8848"
group = "DEFAULT_GROUP"
namespace = ""
cluster = "HZ"
username = "nacos"
password = "nacos"
}
}
config {
# 读取tc服务端的配置文件的方式,这里是从nacos配置中心读取,这样如果tc是集群,可以共享配置
type = "nacos"
# 配置nacos地址等信息
nacos {
serverAddr = "127.0.0.1:8848"
namespace = ""
group = "SEATA_GROUP"
username = "nacos"
password = "nacos"
dataId = "seataServer.properties"
}
}
进入seata2/bin目录,然后运行命令:
seata-server.bat -p 8092
接下来,我们需要将tx-service-group与cluster的映射关系都配置到nacos配置中心。
配置的内容如下:
# 事务组映射关系
service.vgroupMapping.seata-demo=SH
service.enableDegrade=false
service.disableGlobalTransaction=false
# 与TC服务的通信配置
transport.type=TCP
transport.server=NIO
transport.heartbeat=true
transport.enableClientBatchSendRequest=false
transport.threadFactory.bossThreadPrefix=NettyBoss
transport.threadFactory.workerThreadPrefix=NettyServerNIOWorker
transport.threadFactory.serverExecutorThreadPrefix=NettyServerBizHandler
transport.threadFactory.shareBossWorker=false
transport.threadFactory.clientSelectorThreadPrefix=NettyClientSelector
transport.threadFactory.clientSelectorThreadSize=1
transport.threadFactory.clientWorkerThreadPrefix=NettyClientWorkerThread
transport.threadFactory.bossThreadSize=1
transport.threadFactory.workerThreadSize=default
transport.shutdown.wait=3
# RM配置
client.rm.asyncCommitBufferLimit=10000
client.rm.lock.retryInterval=10
client.rm.lock.retryTimes=30
client.rm.lock.retryPolicyBranchRollbackOnConflict=true
client.rm.reportRetryCount=5
client.rm.tableMetaCheckEnable=false
client.rm.tableMetaCheckerInterval=60000
client.rm.sqlParserType=druid
client.rm.reportSuccessEnable=false
client.rm.sagaBranchRegisterEnable=false
# TM配置
client.tm.commitRetryCount=5
client.tm.rollbackRetryCount=5
client.tm.defaultGlobalTransactionTimeout=60000
client.tm.degradeCheck=false
client.tm.degradeCheckAllowTimes=10
client.tm.degradeCheckPeriod=2000
# undo日志配置
client.undo.dataValidation=true
client.undo.logSerialization=jackson
client.undo.onlyCareUpdateColumns=true
client.undo.logTable=undo_log
client.undo.compress.enable=true
client.undo.compress.type=zip
client.undo.compress.threshold=64k
client.log.exceptionRate=100
接下来,需要修改每一个微服务的application.yml文件,让微服务读取nacos中的client.properties文件:
seata:
config:
type: nacos
nacos:
server-addr: 127.0.0.1:8848
username: nacos
password: nacos
group: SEATA_GROUP
data-id: client.properties
重启微服务,现在微服务到底是连接tc的SH集群,还是tc的HZ集群,都统一由nacos的client.properties来决定了。
我们以order-service为例来演示。
首先,在order-service中引入依赖:
<dependency>
<groupId>com.alibaba.cloudgroupId>
<artifactId>spring-cloud-starter-alibaba-seataartifactId>
<exclusions>
<exclusion>
<artifactId>seata-spring-boot-starterartifactId>
<groupId>io.seatagroupId>
exclusion>
exclusions>
dependency>
<dependency>
<groupId>io.seatagroupId>
<artifactId>seata-spring-boot-starterartifactId>
<version>${seata.version}version>
dependency>
在order-service中的application.yml中,配置TC服务信息,通过注册中心nacos,结合服务名称获取TC地址:
seata:
registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址
type: nacos # 注册中心类型 nacos
nacos:
server-addr: 127.0.0.1:8848 # nacos地址
namespace: "" # namespace,默认为空
group: DEFAULT_GROUP # 分组,默认是DEFAULT_GROUP
application: seata-tc-server # seata服务名称
username: nacos
password: nacos
tx-service-group: seata-demo # 事务组名称
service:
vgroup-mapping: # 事务组与cluster的映射关系
seata-demo: SH
微服务如何根据这些配置寻找TC的地址呢?
我们知道注册到Nacos中的微服务,确定一个具体实例需要四个信息:
以上四个信息,在刚才的yaml文件中都能找到:
namespace为空,就是默认的public
结合起来,TC服务的信息就是:public@DEFAULT_GROUP@seata-tc-server@SH,这样就能确定TC服务集群了。然后就可以去Nacos拉取对应的实例信息了。
其它两个微服务也都参考order-service的步骤来做,完全一样。
下面我们就一起学习下Seata中的四种不同的事务模式。
XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。
XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。
二阶段:
Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:
RM一阶段的工作:
① 注册分支事务到TC
② 执行分支业务sql但不提交
③ 报告执行状态到TC
TC二阶段的工作:
TC检测各分支事务执行状态
a.如果都成功,通知所有RM提交事务
b.如果有失败,通知所有RM回滚事务
RM二阶段的工作:
XA模式的优点是什么?
XA模式的缺点是什么?
Seata的starter已经完成了XA模式的自动装配,实现非常简单,步骤如下:
1)修改application.yml文件(每个参与事务的微服务),开启XA模式:
seata:
data-source-proxy-mode: XA
2)给发起全局事务的入口方法添加@GlobalTransactional注解:
本例中是OrderServiceImpl中的create方法.
3)重启所有服务并测试
重启order-service,再次测试,发现无论怎样,三个微服务都能成功回滚。
先看下数据库目前的状态
个人账户余额600
库存数量8
用postman发送订单,成功的
点击send
查看数据库,个人账户余额400
库存数量6
没问题,然后我们尝试一下失败的情况
点击send
查看数据库,个人账户余额不变
AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。
阶段一RM的工作:
阶段二提交时RM的工作:
阶段二回滚时RM的工作:
我们用一个真实的业务来梳理下AT模式的原理。
比如,现在又一个数据库表,记录用户余额:
id | money |
---|---|
1 | 100 |
其中一个分支业务要执行的SQL为:
update tb_account set money = money - 10 where id = 1
AT模式下,当前分支事务执行流程如下:
一阶段:
1)TM发起并注册全局事务到TC
2)TM调用分支事务
3)分支事务准备执行业务SQL
4)RM拦截业务SQL,根据where条件查询原始数据,形成快照。
{
"id": 1, "money": 100
}
5)RM执行业务SQL,提交本地事务,释放数据库锁。此时 money = 90
6)RM报告本地事务状态给TC
二阶段:
1)TM通知TC事务结束
2)TC检查分支事务状态
a)如果都成功,则立即删除快照
b)如果有分支事务失败,需要回滚。读取快照数据({"id": 1, "money": 100}
),将快照恢复到数据库。此时数据库再次恢复为100
简述AT模式与XA模式最大的区别是什么?
在多线程并发访问AT模式的分布式事务时,有可能出现脏写问题,如图:
解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。
AT模式的优点:
AT模式的缺点:
AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单。
只不过,AT模式需要一个表来记录全局锁、另一张表来记录数据快照undo_log。
1)导入数据库表,记录全局锁
导入课前资料提供的Sql文件:seata-at.sql,其中lock_table导入到TC服务关联的数据库,undo_log表导入到微服务关联的数据库:
lock_table表:放入seata_tc数据库
undo_log表:放入seata_demo数据库
添加后如下:
2)修改application.yml文件,将事务模式修改为AT模式即可:
seata:
data-source-proxy-mode: AT # 默认就是AT
3)重启所有微服务并测试
我们用postman直接测试失败的情况,初始情况余额是400,库存是6
TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:
举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30元。
此时,总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务。
确认可以提交,不过之前可用金额已经扣减过了,这里只要清除冻结金额就好了:
此时,总金额 = 冻结金额 + 可用金额 = 0 + 70 = 70元
TCC模式的每个阶段是做什么的?
TCC的优点是什么?
TCC的缺点是什么?
当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚。
执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚。
对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂。
执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂
解决空回滚和业务悬挂问题,必须要记录当前事务状态,是在try、还是cancel?
这里我们定义一张分支事务表:
在seata-demo中执行
CREATE TABLE `account_freeze_tbl` (
`xid` varchar(128) NOT NULL,
`user_id` varchar(255) DEFAULT NULL COMMENT '用户id',
`freeze_money` int(11) unsigned DEFAULT '0' COMMENT '冻结金额',
`state` int(1) DEFAULT NULL COMMENT '事务状态,0:try,1:confirm,2:cancel',
PRIMARY KEY (`xid`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPACT;
其中:
那此时,我们的业务开怎么做呢?
接下来,我们改造account-service,利用TCC实现余额扣减功能。
TCC的Try、Confirm、Cancel方法都需要在接口中基于注解来声明,
我们在account-service项目中的cn.itcast.account.service
包中新建一个接口,声明TCC三个接口:
package cn.itcast.account.service;
import io.seata.rm.tcc.api.BusinessActionContext;
import io.seata.rm.tcc.api.BusinessActionContextParameter;
import io.seata.rm.tcc.api.LocalTCC;
import io.seata.rm.tcc.api.TwoPhaseBusinessAction;
@LocalTCC
public interface AccountTCCService {
@TwoPhaseBusinessAction(name = "deduct", commitMethod = "confirm", rollbackMethod = "cancel")
void deduct(@BusinessActionContextParameter(paramName = "userId") String userId,
@BusinessActionContextParameter(paramName = "money")int money);
boolean confirm(BusinessActionContext ctx);
boolean cancel(BusinessActionContext ctx);
}
在account-service服务中的cn.itcast.account.service.impl
包下新建一个类,实现TCC业务:
package cn.itcast.account.service.impl;
import cn.itcast.account.entity.AccountFreeze;
import cn.itcast.account.mapper.AccountFreezeMapper;
import cn.itcast.account.mapper.AccountMapper;
import cn.itcast.account.service.AccountTCCService;
import io.seata.core.context.RootContext;
import io.seata.rm.tcc.api.BusinessActionContext;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
@Service
@Slf4j
public class AccountTCCServiceImpl implements AccountTCCService {
@Autowired
private AccountMapper accountMapper;
@Autowired
private AccountFreezeMapper freezeMapper;
@Override
@Transactional
public void deduct(String userId, int money) {
// 0.获取事务id
String xid = RootContext.getXID();
// 1.扣减可用余额
accountMapper.deduct(userId, money);
// 2.记录冻结金额,事务状态
AccountFreeze freeze = new AccountFreeze();
freeze.setUserId(userId);
freeze.setFreezeMoney(money);
freeze.setState(AccountFreeze.State.TRY);
freeze.setXid(xid);
freezeMapper.insert(freeze);
}
@Override
public boolean confirm(BusinessActionContext ctx) {
// 1.获取事务id
String xid = ctx.getXid();
// 2.根据id删除冻结记录
int count = freezeMapper.deleteById(xid);
return count == 1;
}
@Override
public boolean cancel(BusinessActionContext ctx) {
// 0.查询冻结记录
String xid = ctx.getXid();
AccountFreeze freeze = freezeMapper.selectById(xid);
// 1.恢复可用余额
accountMapper.refund(freeze.getUserId(), freeze.getFreezeMoney());
// 2.将冻结金额清零,状态改为CANCEL
freeze.setFreezeMoney(0);
freeze.setState(AccountFreeze.State.CANCEL);
int count = freezeMapper.updateById(freeze);
return count == 1;
}
}
修改AccountController.java
@Autowired
private AccountTCCService accountService;
目前数据库中余额400,库存6
执行postman
点击send,发现报错500
看下啊数据库
freeze表中有回滚记录
余额还是400
库存依然是6
Saga 模式是 Seata 即将开源的长事务解决方案,将由蚂蚁金服主要贡献。
其理论基础是Hector & Kenneth 在1987年发表的论文Sagas。
Seata官网对于Saga的指南:https://seata.io/zh-cn/docs/user/saga.html
在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作。
分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会去退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态。
Saga也分为两个阶段:
优点:
缺点:
我们从以下几个方面来对比四种实现:
Seata的TC服务作为分布式事务核心,一定要保证集群的高可用性。
搭建TC服务集群非常简单,启动多个TC服务,注册到nacos即可。
但集群并不能确保100%安全,万一集群所在机房故障怎么办?所以如果要求较高,一般都会做异地多机房容灾。
微服务基于事务组(tx-service-group)与TC集群的映射关系,来查找当前应该使用哪个TC集群。当SH集群故障时,只需要将vgroup-mapping中的映射关系改成HZ。则所有微服务就会切换到HZ的TC集群了。