(pytorch-深度学习系列)pytorch实现多层感知机(手动定义模型)对Fashion-MNIST数据集进行分类-学习笔记

pytorch实现多层感知机对Fashion-MNIST数据集进行分类(手动定义模型)

多层感知机:
多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hidden layer)。隐藏层位于输入层和输出层之间。
(pytorch-深度学习系列)pytorch实现多层感知机(手动定义模型)对Fashion-MNIST数据集进行分类-学习笔记_第1张图片
输入和输出个数分别为4和3,中间的隐藏层中包含了5个隐藏单元,输入层不涉及计算,多层感知机的层数为2,隐藏层中的神经元和输入层中各个输入完全连接,输出层中的神经元和隐藏层中的各个神经元也完全连接。因此,多层感知机中的隐藏层和输出层都是全连接层。
多层感知机就是含有至少一个隐藏层的由全连接层组成的神经网络,且每个隐藏层的输出通过激活函数进行变换。多层感知机的层数和各隐藏层中隐藏单元个数都是超参数。
多层感知机按以下方式计算输出:
(pytorch-深度学习系列)pytorch实现多层感知机(手动定义模型)对Fashion-MNIST数据集进行分类-学习笔记_第2张图片

导入所需模块:

import torch
import numpy as np
import sys

读取数据集:

mnist_train = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=True, download=True, transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=False, download=True, transform=transforms.ToTensor())
batch_size = 256
if sys.platform.startswith('win'):
    num_workers = 0  # 0表示不用额外的进程来加速读取数据
else:
    num_workers = 4
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)

定义模型的参数:

num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_hiddens)), dtype=torch.float)
b1 = torch.zeros(num_hiddens, dtype=torch.float)
W2 = torch.tensor(np.random.normal(0, 0.01, (num_hiddens, num_outputs)), dtype=torch.float)
b2 = torch.zeros(num_outputs, dtype=torch.float)

params = [W1, b1, W2, b2]
for param in params:
    param.requires_grad_(requires_grad=True)

定义模型:

def relu(X): # 激活函数
    return torch.max(input=X, other=torch.tensor(0.0))
    # 使用基础的max函数来实现ReLU,而非直接调用relu函数
    
def net(X): # 定义模型结构
    X = X.view((-1, num_inputs)) # view函数将每张原始图像改成长度为num_inputs的向量
    H = relu(torch.matmul(X, W1) + b1)
    return torch.matmul(H, W2) + b2

loss = torch.nn.CrossEntropyLoss() # 损失函数

训练模型:

num_epochs, lr = 5, 100.0
def evaluate_accuracy(data_iter, net):
    acc_sum, n = 0.0, 0
    for X, y in data_iter:
        acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
        n += y.shape[0]
    return acc_sum / n

def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
              params=None, lr=None, optimizer=None):
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
        for X, y in train_iter:
            y_hat = net(X)
            l = loss(y_hat, y).sum()

            # 梯度清零
            if optimizer is not None:
                optimizer.zero_grad() # 这里我们用到优化器,所以直接对优化器行梯度清零
            elif params is not None and params[0].grad is not None:
                for param in params:
                    param.grad.data.zero_()

            l.backward()
            if optimizer is None:
                sgd(params, lr, batch_size)
            else:
                optimizer.step()  # 用到优化器这里


            train_l_sum += l.item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
            n += y.shape[0] 
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
              % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
              
train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params, lr)

你可能感兴趣的:(DeepLearning学习,深度学习,神经网络,python,机器学习)