串口全称叫做串行接口,通常也叫做 COM 接口,串行接口指的是数据一个一个的顺序传输,通信线路简单。使用两条线即可实现双向通信,一条用于发送,一条用于接收。串口通信距离远,但是速度相对会低,串口是一种很常用的工业接口。
I.MX6U 自带的 UART 外设就是串口的一种,UART 全称是 Universal Asynchronous Receiver/Trasmitter,也就是异步串行收发器。UART 作为串口的一种,其工作原理也是将数据一位一位的进行传输,发送和接收各用一条线,因此通过 UART 接口与外界相连最少只需要三条线:TXD(发送)、RXD(接收)和 GND(地线)
Linux 提供了串口驱动框架,我们只需要按照相应的串口框架编写驱动程序即可。串口驱动没有什么主机端和设备端之分,就只有一个串口驱动,而且这个驱动也已经由 NXP 官方已经编写好了,我们真正要做的就是在设备树中添加所要使用的串口节点信息。当系统启动以后串口驱动和设备匹配成功,相应的串口就会被驱动起来,生成/dev/ttymxcX(X=0….n)文件。
uart_driver 结构体表示 UART 驱动,uart_driver 定义在 include/linux/serial_core.h 文件中
struct uart_driver
{
struct module *owner; /* 模块所属者 */
const char *driver_name; /* 驱动名字 */
const char *dev_name; /* 设备名字 */
int major; /* 主设备号 */
int minor; /* 次设备号 */
int nr; /* 设备数 */
struct console *cons; /* 控制台 */
/*
* these are private; the low level driver should not
* touch these; they should be initialised to NULL
*/
struct uart_state *state;
struct tty_driver *tty_driver;
};
int uart_register_driver(struct uart_driver *drv)
函数参数和返回值含义如下:
void uart_unregister_driver(struct uart_driver *drv)
函数参数和返回值含义如下:
uart_port 表示一个具体的 port,uart_port 定义在 include/linux/serial_core.h 文件
117 struct uart_port {
118 spinlock_t lock; /* port lock */
119 unsigned long iobase; /* in/out[bwl] */
120 unsigned char __iomem *membase; /* read/write[bwl] */
......
235 const struct uart_ops *ops;
236 unsigned int custom_divisor;
237 unsigned int line; /* port index */
238 unsigned int minor;
239 resource_size_t mapbase; /* for ioremap */
240 resource_size_t mapsize;
241 struct device *dev; /* parent device */
......
250 };
uart_port 中最主要的就是第 235 行的 ops,ops 包含了串口的具体驱动函数,UART 驱动编写人员需要实现 uart_ops,因为 uart_ops 是最底层的 UART 驱动接口,是实实在在的和 UART 寄存器打交道的。
int uart_add_one_port(struct uart_driver *drv,
struct uart_port *uport)
函数参数和返回值含义如下:
int uart_remove_one_port(struct uart_driver *drv, struct uart_port *uport)
函数参数和返回值含义如下:
串口的应用编程就是通过 ioctl()对串口进行配置,调用 read()读取串口的数据、调用 write()向串口写入数据。
Linux 为上层用户做了一层封装,将这些 ioctl()操作封装成了一套标准的 API,这些 API 其实是 C 库函数。
#define _GNU_SOURCE //在源文件开头定义_GNU_SOURCE宏
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
typedef struct uart_hardware_cfg {
unsigned int baudrate; /* 波特率 */
unsigned char dbit; /* 数据位 */
char parity; /* 奇偶校验 */
unsigned char sbit; /* 停止位 */
} uart_cfg_t;
static struct termios old_cfg; //用于保存终端的配置参数
static int fd; //串口终端对应的文件描述符
/**
** 串口初始化操作
** 参数device表示串口终端的设备节点
**/
static int uart_init(const char *device)
{
/* 打开串口终端 */
fd = open(device, O_RDWR | O_NOCTTY);
if (0 > fd) {
fprintf(stderr, "open error: %s: %s\n", device, strerror(errno));
return -1;
}
/* 获取串口当前的配置参数 */
if (0 > tcgetattr(fd, &old_cfg)) {
fprintf(stderr, "tcgetattr error: %s\n", strerror(errno));
close(fd);
return -1;
}
return 0;
}
/**
** 串口配置
** 参数cfg指向一个uart_cfg_t结构体对象
**/
static int uart_cfg(const uart_cfg_t *cfg)
{
struct termios new_cfg = {0}; //将new_cfg对象清零
speed_t speed;
/* 设置为原始模式 */
cfmakeraw(&new_cfg);
/* 使能接收 */
new_cfg.c_cflag |= CREAD;
/* 设置波特率 */
switch (cfg->baudrate) {
case 1200: speed = B1200;
break;
case 1800: speed = B1800;
break;
case 2400: speed = B2400;
break;
case 4800: speed = B4800;
break;
case 9600: speed = B9600;
break;
case 19200: speed = B19200;
break;
case 38400: speed = B38400;
break;
case 57600: speed = B57600;
break;
case 115200: speed = B115200;
break;
case 230400: speed = B230400;
break;
case 460800: speed = B460800;
break;
case 500000: speed = B500000;
break;
default: //默认配置为115200
speed = B115200;
printf("default baud rate: 115200\n");
break;
}
if (0 > cfsetspeed(&new_cfg, speed)) {
fprintf(stderr, "cfsetspeed error: %s\n", strerror(errno));
return -1;
}
/* 设置数据位大小 */
new_cfg.c_cflag &= ~CSIZE; //将数据位相关的比特位清零
switch (cfg->dbit) {
case 5:
new_cfg.c_cflag |= CS5;
break;
case 6:
new_cfg.c_cflag |= CS6;
break;
case 7:
new_cfg.c_cflag |= CS7;
break;
case 8:
new_cfg.c_cflag |= CS8;
break;
default: //默认数据位大小为8
new_cfg.c_cflag |= CS8;
printf("default data bit size: 8\n");
break;
}
/* 设置奇偶校验 */
switch (cfg->parity) {
case 'N': //无校验
new_cfg.c_cflag &= ~PARENB;
new_cfg.c_iflag &= ~INPCK;
break;
case 'O': //奇校验
new_cfg.c_cflag |= (PARODD | PARENB);
new_cfg.c_iflag |= INPCK;
break;
case 'E': //偶校验
new_cfg.c_cflag |= PARENB;
new_cfg.c_cflag &= ~PARODD; /* 清除PARODD标志,配置为偶校验 */
new_cfg.c_iflag |= INPCK;
break;
default: //默认配置为无校验
new_cfg.c_cflag &= ~PARENB;
new_cfg.c_iflag &= ~INPCK;
printf("default parity: N\n");
break;
}
/* 设置停止位 */
switch (cfg->sbit) {
case 1: //1个停止位
new_cfg.c_cflag &= ~CSTOPB;
break;
case 2: //2个停止位
new_cfg.c_cflag |= CSTOPB;
break;
default: //默认配置为1个停止位
new_cfg.c_cflag &= ~CSTOPB;
printf("default stop bit size: 1\n");
break;
}
/* 将MIN和TIME设置为0 */
new_cfg.c_cc[VTIME] = 0;
new_cfg.c_cc[VMIN] = 0;
/* 清空缓冲区 */
if (0 > tcflush(fd, TCIOFLUSH)) {
fprintf(stderr, "tcflush error: %s\n", strerror(errno));
return -1;
}
/* 写入配置、使配置生效 */
if (0 > tcsetattr(fd, TCSANOW, &new_cfg)) {
fprintf(stderr, "tcsetattr error: %s\n", strerror(errno));
return -1;
}
/* 配置OK 退出 */
return 0;
}
/***
--dev=/dev/ttymxc2
--brate=115200
--dbit=8
--parity=N
--sbit=1
--type=read
***/
/**
** 打印帮助信息
**/
static void show_help(const char *app)
{
printf("Usage: %s [选项]\n"
"\n必选选项:\n"
" --dev=DEVICE 指定串口终端设备名称, 譬如--dev=/dev/ttymxc2\n"
"\n可选选项:\n"
" --brate=SPEED 指定串口波特率, 譬如--brate=115200\n"
" --dbit=SIZE 指定串口数据位个数, 譬如--dbit=8(可取值为: 5/6/7/8)\n"
" --parity=PARITY 指定串口奇偶校验方式, 譬如--parity=N(N表示无校验、O表示奇校验、E表示偶校验)\n"
" --sbit=SIZE 指定串口停止位个数, 譬如--sbit=1(可取值为: 1/2)\n"
" --help 查看本程序使用帮助信息\n\n", app);
}
/**
** 信号处理函数,当串口有数据可读时,会跳转到该函数执行
**/
static void io_handler(int sig, siginfo_t *info, void *context)
{
unsigned char buf[10] = {0};
int ret;
int n;
if(SIGRTMIN != sig)
return;
/* 判断串口是否有数据可读 */
if (POLL_IN == info->si_code) {
ret = read(fd, buf, 8); //一次最多读8个字节数据
printf("[ ");
for (n = 0; n < ret; n++)
printf("0x%hhx ", buf[n]);
printf("]\n");
}
}
/**
** 异步I/O初始化函数
**/
static void async_io_init(void)
{
struct sigaction sigatn;
int flag;
/* 使能异步I/O */
flag = fcntl(fd, F_GETFL); //使能串口的异步I/O功能
flag |= O_ASYNC;
fcntl(fd, F_SETFL, flag);
/* 设置异步I/O的所有者 */
fcntl(fd, F_SETOWN, getpid());
/* 指定实时信号SIGRTMIN作为异步I/O通知信号 */
fcntl(fd, F_SETSIG, SIGRTMIN);
/* 为实时信号SIGRTMIN注册信号处理函数 */
sigatn.sa_sigaction = io_handler; //当串口有数据可读时,会跳转到io_handler函数
sigatn.sa_flags = SA_SIGINFO;
sigemptyset(&sigatn.sa_mask);
sigaction(SIGRTMIN, &sigatn, NULL);
}
static void *read_thread(void *arg)
{
printf("read_thread , process id=%d , thread id= %lu\n",getpid(),pthread_self());
async_io_init(); //我们使用异步I/O方式读取串口的数据,调用该函数去初始化串口的异步I/O
while(1) sleep(1); //进入休眠、等待有数据可读,有数据可读之后就会跳转到io_handler()函数
return (void *)0;
}
static void *write_thread(void *arg)
{
unsigned char w_buf[8] = {0};
printf("write_thread , process id=%d , thread id= %lu\n",getpid(),pthread_self());
while(1)
{
scanf("%s",w_buf);
write(fd, w_buf, 8); //一次向串口写入8个字节
memset(w_buf, 0, sizeof w_buf);
}
return (void *)0;
}
int main(int argc, char *argv[])
{
uart_cfg_t cfg = {0};
char *device = NULL;
int rw_flag = -1;
int n;
/* 解析出参数 */
for (n = 1; n < argc; n++) {
if (!strncmp("--dev=", argv[n], 6))
device = &argv[n][6];
else if (!strncmp("--brate=", argv[n], 8))
cfg.baudrate = atoi(&argv[n][8]);
else if (!strncmp("--dbit=", argv[n], 7))
cfg.dbit = atoi(&argv[n][7]);
else if (!strncmp("--parity=", argv[n], 9))
cfg.parity = argv[n][9];
else if (!strncmp("--sbit=", argv[n], 7))
cfg.sbit = atoi(&argv[n][7]);
else if (!strcmp("--help", argv[n])) {
show_help(argv[0]); //打印帮助信息
exit(EXIT_SUCCESS);
}
}
/* 串口初始化 */
if (uart_init(device))
exit(EXIT_FAILURE);
/* 串口配置 */
if (uart_cfg(&cfg)) {
tcsetattr(fd, TCSANOW, &old_cfg); //恢复到之前的配置
close(fd);
exit(EXIT_FAILURE);
}
pthread_t tid1,tid2;
int ret = pthread_create(&tid1,NULL,read_thread,NULL);
if(ret != 0)
{
fprintf(stderr,"error:%s\n",strerror(ret));
exit(-1);
}
ret = pthread_create(&tid2,NULL,write_thread,NULL);
if(ret != 0)
{
fprintf(stderr,"error:%s\n",strerror(ret));
exit(-1);
}
while(1);
/* 退出 */
tcsetattr(fd, TCSANOW, &old_cfg); //恢复到之前的配置
close(fd);
exit(EXIT_SUCCESS);
}