并发编程系列——6线程池核心原理分析

学习目标

  1. 线程池的作用

  2. jdk给我们提供了哪几种常用线程池

  3. 线程池有哪几大核心参数

  4. 线程池的拒绝策略有哪些

  5. 线程中阻塞队列的作用

  6. 线程池的工作流程

  7. 线程池的设计思维

  8. 线程池中的阻塞队列如果用默认的,会有哪些问题

  9. 线程池的工作状态有哪些

  10. 线程池中核心线程数量大小怎么设置?

第1章 线程池简介

1.1 线程的问题

  1. 线程执行完run发放自动被销毁了,且任务与线程绑定在了一起,所以当任务多的时候,会频繁的创建和销毁线程,这给我们CPU和内存带来了很大的开销。

  2. 线程一多了,无法实现统一管理。

1.2 线程池的概念及作用

  1. 他是池化技术的一种应用

  2. 他实现了线程的重复利用

  3. 实现了对线程资源的管理控制

1.3 常见线程池

  1. newFixedThreadPool:该方法返回一个固定数量的线程池,线程数不变,当有一个任务提交时,若线程池中空闲,则立即执行,若没有,则会被暂缓在一个任务队列中,等待有空闲的线程去执行。

  2. newSingleThreadExecutor: 创建一个线程的线程池,若空闲则执行,若没有空闲线程则暂缓在任务队列中。

  3. newCachedThreadPool:返回一个可根据实际情况调整线程个数的线程池,不限制最大线程数量,若用空闲的线程则执行任务,若无任务则不创建线程。并且每一个空闲线程会在60秒后自动回收

  4. newScheduledThreadPool: 创建一个可以指定线程的数量的线程池,但是这个线程池还带有延迟和周期性执行任务的功能,类似定时器。

  5. newWorkStealingPool:适合使用在很耗时的操作,但是newWorkStealingPool不是ThreadPoolExecutor的扩展,它是新的线程池类ForkJoinPool的扩展,但是都是在统一的一个Executors类中实现,由于能够合理的使用CPU进行对任务操作(并行操作),所以适合使用在很耗时的任务中

第2章 线程池原理分析

2.1 初始化

我们先看下初始化5个参数

public ThreadPoolExecutor(int corePoolSize,  
                          int maximumPoolSize,    
                          long keepAliveTime,
                          TimeUnit unit, 
                          BlockingQueue workQueue) {  
    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
         Executors.defaultThreadFactory(), defaultHandler);
}

    public ThreadPoolExecutor(int corePoolSize,  //主线程数
                              int maximumPoolSize,  //最大线程数
                              long keepAliveTime,    //线程存活时间   (除主线程外,其他的线程在没有任务执行的时候需要回收,多久后回收)
                              TimeUnit unit,  //存活时间的时间单位
                              BlockingQueue workQueue,  //阻塞队列,我们需要执行的task都在该队列
                              ThreadFactory threadFactory,  //生成thread的工厂
                              RejectedExecutionHandler handler) {  //拒绝饱和策略,当队列满了并且线程个数达到 maximunPoolSize 后采取的策略
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.acc = System.getSecurityManager() == null ?
                null :
                AccessController.getContext();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

2.2 execute方法

并发编程系列——6线程池核心原理分析_第1张图片

 

public void execute(Runnable command) {
    if (command == null)  //如果要执行的任务是空的,异常
        throw new NullPointerException();
    /*
     * Proceed in 3 steps:
     *
     * 1. If fewer than corePoolSize threads are running, try to
     * start a new thread with the given command as its first
     * task.  The call to addWorker atomically checks runState and
     * workerCount, and so prevents false alarms that would add
     * threads when it shouldn't, by returning false.
     *
     * 2. If a task can be successfully queued, then we still need
     * to double-check whether we should have added a thread
     * (because existing ones died since last checking) or that
     * the pool shut down since entry into this method. So we
     * recheck state and if necessary roll back the enqueuing if
     * stopped, or start a new thread if there are none.
     *
     * 3. If we cannot queue task, then we try to add a new
     * thread.  If it fails, we know we are shut down or saturated
     * and so reject the task.
     */
    int c = ctl.get();//111000...000
    //高三位代表线程池的状态,低29位代表线程池中的线程数量
    //如果线程数小于主线程数,添加线程
    if (workerCountOf(c) < corePoolSize) {
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    //如果超过主线程数,将任务添加至workqueue 阻塞队列
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        //再判断一次运行状态,如果线程池不处于running状态,则把刚加进队列的任务移除,如果移除成功则往下走进行拒绝
        if (! isRunning(recheck) && remove(command))
            reject(command);
        //接着上一个条件,如果移除失败则判断是否有工作线程,如果当前线程池线程空,则添加一个线程
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    //如果超过主线程数且添加阻塞队列失败,则增加非核心线程,如果添加非核心线程也失败,则拒绝
    else if (!addWorker(command, false))
        reject(command);
}
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));//111000...000
private static final int COUNT_BITS = Integer.SIZE - 3;//29
private static final int CAPACITY   = (1 << COUNT_BITS) - 1;//00011111 11111111 11111111 11111111
//00000000 00000000 00000000 00000001  << 29 =
//00100000 00000000 00000000 00000000 -1 = 
//00011111 11111111 11111111 11111111

// runState is stored in the high-order bits
private static final int RUNNING    = -1 << COUNT_BITS; //11100000 ... 000
//-1 原码: 10000000 00000000 00000000 00000001
//-1 反码: 11111111 11111111 11111111 11111110
//-1 补码: 11111111 11111111 11111111 11111111 <<29=
//        11100000 0000000 00000000 00000000

private static final int SHUTDOWN   =  0 << COUNT_BITS;//00000000 ... 000
private static final int STOP       =  1 << COUNT_BITS;//001 0000 ... 000
private static final int TIDYING    =  2 << COUNT_BITS;//010 0000 ... 000
private static final int TERMINATED =  3 << COUNT_BITS;//011 0000 ... 000
1、RUNNING
(1) 状态说明:线程池处在RUNNING状态时,能够接收新任务,以及对已添加的任务进行处理。 
(02) 状态切换:线程池的初始化状态是RUNNING。换句话说,线程池被一旦被创建,就处于RUNNING状态,并且线程池中的任务数为0!
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
2、 SHUTDOWN
(1) 状态说明:线程池处在SHUTDOWN状态时,不接收新任务,但能处理已添加的任务。 
(2) 状态切换:调用线程池的shutdown()接口时,线程池由RUNNING -> SHUTDOWN。
3、STOP
(1) 状态说明:线程池处在STOP状态时,不接收新任务,不处理已添加的任务,并且会中断正在处理的任务。 
(2) 状态切换:调用线程池的shutdownNow()接口时,线程池由(RUNNING or SHUTDOWN ) -> STOP。
4、TIDYING
(1) 状态说明:当所有的任务已终止,ctl记录的”任务数量”为0,线程池会变为TIDYING状态。当线程池变为TIDYING状态时,会执行钩子函数terminated()。terminated()在ThreadPoolExecutor类中是空的,若用户想在线程池变为TIDYING时,进行相应的处理;可以通过重载terminated()函数来实现。 
(2) 状态切换:当线程池在SHUTDOWN状态下,阻塞队列为空并且线程池中执行的任务也为空时,就会由 SHUTDOWN -> TIDYING。 
当线程池在STOP状态下,线程池中执行的任务为空时,就会由STOP -> TIDYING。
5、 TERMINATED
(1) 状态说明:线程池彻底终止,就变成TERMINATED状态。 
(2) 状态切换:线程池处在TIDYING状态时,执行完terminated()之后,就会由 TIDYING -> TERMINATED。
private static int runStateOf(int c)     { return c & ~CAPACITY; }
private static int workerCountOf(int c)  { return c & CAPACITY; }//CAPACITY:000111...111
private static int ctlOf(int rs, int wc) { return rs | wc; }

2.3 addWorker方法

private boolean addWorker(Runnable firstTask, boolean core) {
    retry:  //goto语句  叫demo
    //自旋检查线程池的状态。阻塞队列是否为空等判断
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))//如果线程池的运行状态是running的话直接跳过该条件语句往下走,如果是>=SHUTDOWN的话就往后判断(为什么不直接返回false不让他创建worker呢,因为在shutdown状态是可以创建线程去处理阻塞队列里的任务的)
            //此时因为rs>=SHTDOWN了,所以会先判断是否等于SHUTDOWN,如果不等于就直接返回false不让创建worker,如果等于的话接着往下判断
            //如果当前任务不为空直接返回false不让创建worker,(这里为什么当前任务为空就直接不让创建worker呢,就是因为shutdown状态不能再接收新任务。
            //如果当前任务为空则判断阻塞队列是否为空,如果为空则返回false,不让创建worker,如果不为空就不走这个条件,接着往下走
            return false;

        //自旋
        for (;;) {
            int wc = workerCountOf(c);
            //如果现有线程数大于最大值,或者大于等于最大线程数(主线程数)
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            //cas添加线程
            if (compareAndIncrementWorkerCount(c))
                break retry;
            c = ctl.get();  // Re-read ctl
            //如果失败了,继续外层循环判断
            if (runStateOf(c) != rs)
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }

    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        //开启一个线程,Worker实现了runnable接口
        w = new Worker(firstTask);
        final Thread t = w.thread;
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                int rs = runStateOf(ctl.get());

                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    //添加至wokers
                    workers.add(w);
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            //添加成功
            if (workerAdded) {
                t.start();   //启动线程,会调用我们线程的run接口,也就是我们worker的run
                workerStarted = true;
            }
        }
    } finally {
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}

2.4 goto语句demo

    retry:
        for (int i = 0; i < 3; i++) {
            for (int j = 3; j < 10; j++) {
//                if (j == 4) {
//                    break retry;  //跳出外面循环
//                }
                if (j == 7) {
                    continue retry;  //继续外面循环
                }
                System.out.println(i+":"+j);
            }

        }
Worker(Runnable firstTask) {
    setState(-1); // inhibit interrupts until runWorker   禁止中断,直到runWorker
    this.firstTask = firstTask;
    this.thread = getThreadFactory().newThread(this);
}

2.5 worker.run方法

final void runWorker(Worker w) {    
    Thread wt = Thread.currentThread();    
    Runnable task = w.firstTask;    
    w.firstTask = null;    
    w.unlock(); // allow interrupts      
    boolean completedAbruptly = true;    
    try {        //只要一直能获取到task,就一直会执行,不会关闭,所以线程也不会销毁,线程销毁只有当task为null        
        while (task != null || (task = getTask()) != null) {            
            w.lock();            
            // If pool is stopping, ensure thread is interrupted;            
            // if not, ensure thread is not interrupted.  This            
            // requires a recheck in second case to deal with            
            // shutdownNow race while clearing interrupt            
            if ((runStateAtLeast(ctl.get(), STOP) ||                 
                 (Thread.interrupted() &&                  
                  runStateAtLeast(ctl.get(), STOP))) &&                
                !wt.isInterrupted())                
                wt.interrupt();            
            try {                
                //调用线程方法之前执行                
                beforeExecute(wt, task);                
                Throwable thrown = null;                
                try {                    
                    //调用task的run方法                    
                    task.run();                
                } catch (RuntimeException x) {                    
                    thrown = x; throw x;                
                } catch (Error x) {                    
                    thrown = x; throw x;                
                } catch (Throwable x) {                    
                    thrown = x; throw new Error(x);                
                } finally {                    
                    //调用线程方法之后执行                    
                    afterExecute(task, thrown);                
                }            
            } finally {                
                task = null;                
                w.completedTasks++;                
                w.unlock();            
            }        
        }        
        completedAbruptly = false;    
    } finally {        
        processWorkerExit(w, completedAbruptly);    
    }
}

2.6 getTask()方法

private Runnable getTask() {    
    boolean timedOut = false; // Did the last poll() time out?	//自旋获取    
    
    for (;;) {        
        int c = ctl.get();        
        int rs = runStateOf(c);        
        
        // Check if queue empty only if necessary. 必要时检查空,状态是否停止或者shutdown        
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {            
            decrementWorkerCount();            
            return null;        
        }        
        
        //获取线程数量        
        int wc = workerCountOf(c);        
        
        // Are workers subject to culling?        
        //线程数大于主线程数时,或者allowCoreThreadTimeOut参数为true  allowCoreThreadTimeOut默认为false        
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;        
        //超过最大线程,或者timed为true ,&& wc大于1个,并且任务队列为空的时候        
        if ((wc > maximumPoolSize || (timed && timedOut))            
            && (wc > 1 || workQueue.isEmpty())) {            
            //线程数-1,并且返回null,该线程结束            
            if (compareAndDecrementWorkerCount(c))                
                return null;            
            continue;        
        }        
        
        try {            
            //如果time是true,超过时间不阻塞,不然一直阻塞,不回收            
            Runnable r = timed ?                
                workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : 
            //移除并返回队列头部的元素,如果为空,超过时间返回null                
            workQueue.take();
            //移除并返回队列头部的元素,如果为空,一直阻塞            
            if (r != null)                
                return r;            
            timedOut = true;        
        } catch (InterruptedException retry) {            
            timedOut = false;        
        }    
    }
}

你可能感兴趣的:(并发编程,java,jvm,开发语言)