import torch import torch.autograd as autograd # computation graph from torch import Tensor # tensor node in the computation graph import torch.nn as nn # neural networks import torch.optim as optim # optimizers e.g. gradient descent, ADAM, etc. import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from mpl_toolkits.axes_grid1 import make_axes_locatable from mpl_toolkits.mplot3d import Axes3D import matplotlib.ticker from sklearn.model_selection import train_test_split import numpy as np import time from pyDOE import lhs #Latin Hypercube Sampling import scipy.io #Set default dtype to float32 torch.set_default_dtype(torch.float) #PyTorch random number generator torch.manual_seed(1234) # Random number generators in other libraries np.random.seed(1234) # Device configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(device) if device == 'cuda': print(torch.cuda.get_device_name()) steps=10000 lr=1e-1 lr1 = 0.001 layers = np.array([2,20,20,20,20,20,20,20,20,1]) #8 hidden layers #Nu: Number of training points # Nf: Number of collocation points (Evaluate PDE) N_u = 100 #Total number of data points for 'u' N_f = 10000 #Total number of collocation points nu = 0.01/np.pi #diffusion coeficient epoches = 1000 def plot3D(x,t,y): x_plot =x.squeeze(1) t_plot =t.squeeze(1) X,T= torch.meshgrid(x_plot,t_plot) F_xt = y fig,ax=plt.subplots(1,1) cp = ax.contourf(T,X, F_xt,20,cmap="rainbow") fig.colorbar(cp) # Add a colorbar to a plot ax.set_title('F(x,t)') ax.set_xlabel('t') ax.set_ylabel('x') plt.show() ax = plt.axes(projection='3d') ax.plot_surface(T.numpy(), X.numpy(), F_xt.numpy(),cmap="rainbow") ax.set_xlabel('t') ax.set_ylabel('x') ax.set_zlabel('f(x,t)') plt.show() def plot3D_Matrix(x, t, y): X, T = x, t F_xt = y fig, ax = plt.subplots(1, 1) cp = ax.contourf(T, X, F_xt, 20, cmap="rainbow") fig.colorbar(cp) # Add a colorbar to a plot ax.set_title('F(x,t)') ax.set_xlabel('t') ax.set_ylabel('x') plt.show() ax = plt.axes(projection='3d') ax.plot_surface(T.numpy(), X.numpy(), F_xt.numpy(), cmap="rainbow") ax.set_xlabel('t') ax.set_ylabel('x') ax.set_zlabel('f(x,t)') plt.show() def solutionplot(u_pred, X_u_train, u_train): # https://github.com/omniscientoctopus/Physics-Informed-Neural-Networks fig, ax = plt.subplots() ax.axis('off') gs0 = gridspec.GridSpec(1, 2) gs0.update(top=1 - 0.06, bottom=1 - 1 / 3, left=0.15, right=0.85, wspace=0) ax = plt.subplot(gs0[:, :]) h = ax.imshow(u_pred, interpolation='nearest', cmap='rainbow', extent=[T.min(), T.max(), X.min(), X.max()], origin='lower', aspect='auto') divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) fig.colorbar(h, cax=cax) ax.plot(X_u_train[:, 1], X_u_train[:, 0], 'kx', label='Data (%d points)' % (u_train.shape[0]), markersize=4, clip_on=False) line = np.linspace(x.min(), x.max(), 2)[:, None] ax.plot(t[25] * np.ones((2, 1)), line, 'w-', linewidth=1) ax.plot(t[50] * np.ones((2, 1)), line, 'w-', linewidth=1) ax.plot(t[75] * np.ones((2, 1)), line, 'w-', linewidth=1) ax.set_xlabel('$t$') ax.set_ylabel('$x$') ax.legend(frameon=False, loc='best') ax.set_title('$u(x,t)$', fontsize=10) ''' Slices of the solution at points t = 0.25, t = 0.50 and t = 0.75 ''' ####### Row 1: u(t,x) slices ################## gs1 = gridspec.GridSpec(1, 3) gs1.update(top=1 - 1 / 3, bottom=0, left=0.1, right=0.9, wspace=0.5) ax = plt.subplot(gs1[0, 0]) ax.plot(x, usol.T[25, :], 'b-', linewidth=2, label='Exact') ax.plot(x, u_pred.T[25, :], 'r--', linewidth=2, label='Prediction') ax.set_xlabel('$x$') ax.set_ylabel('$u(x,t)$') ax.set_title('$t = 0.25s$', fontsize=10) ax.axis('square') ax.set_xlim([-1.1, 1.1]) ax.set_ylim([-1.1, 1.1]) ax = plt.subplot(gs1[0, 1]) ax.plot(x, usol.T[50, :], 'b-', linewidth=2, label='Exact') ax.plot(x, u_pred.T[50, :], 'r--', linewidth=2, label='Prediction') ax.set_xlabel('$x$') ax.set_ylabel('$u(x,t)$') ax.axis('square') ax.set_xlim([-1.1, 1.1]) ax.set_ylim([-1.1, 1.1]) ax.set_title('$t = 0.50s$', fontsize=10) ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.35), ncol=5, frameon=False) ax = plt.subplot(gs1[0, 2]) ax.plot(x, usol.T[75, :], 'b-', linewidth=2, label='Exact') ax.plot(x, u_pred.T[75, :], 'r--', linewidth=2, label='Prediction') ax.set_xlabel('$x$') ax.set_ylabel('$u(x,t)$') ax.axis('square') ax.set_xlim([-1.1, 1.1]) ax.set_ylim([-1.1, 1.1]) ax.set_title('$t = 0.75s$', fontsize=10) plt.savefig('Burgers.png', dpi=500) class FCN(nn.Module): def __init__(self, layers): super().__init__() # call __init__ from parent class 'activation function' self.activation = nn.Tanh() 'loss function' self.loss_function = nn.MSELoss(reduction='mean') 'Initialise neural network as a list using nn.Modulelist' self.linears = nn.ModuleList([nn.Linear(layers[i], layers[i + 1]) for i in range(len(layers) - 1)]) self.iter = 0 'Xavier Normal Initialization' for i in range(len(layers) - 1): nn.init.xavier_normal_(self.linears[i].weight.data, gain=1.0) #Xavier正态分布 wwww = self.linears[i].weight.data # set biases to zero nn.init.zeros_(self.linears[i].bias.data) 'foward pass' def forward(self, x): if torch.is_tensor(x) != True: x = torch.from_numpy(x) u_b = torch.from_numpy(ub).float().to(device) l_b = torch.from_numpy(lb).float().to(device) # preprocessing input x = (x - l_b) / (u_b - l_b) # feature scaling # convert to float a = x.float() for i in range(len(layers) - 2): z = self.linears[i](a) a = self.activation(z) a = self.linears[-1](a) return a def loss_BC(self, x, y): loss_u = self.loss_function(self.forward(x), y) return loss_u def loss_PDE(self, X_train_Nf): g = X_train_Nf.clone() g.requires_grad = True u = self.forward(g) u_x_t = \ autograd.grad(u, g, torch.ones([X_train_Nf.shape[0], 1]).to(device), retain_graph=True, create_graph=True)[0] u_xx_tt = autograd.grad(u_x_t, g, torch.ones(X_train_Nf.shape).to(device), create_graph=True)[0] u_x = u_x_t[:, [0]] u_t = u_x_t[:, [1]] u_xx = u_xx_tt[:, [0]] f = u_t + (self.forward(g)) * (u_x) - (nu) * u_xx loss_f = self.loss_function(f, f_hat) return loss_f def loss(self, x, y, X_train_Nf): loss_u = self.loss_BC(x, y) loss_f = self.loss_PDE(X_train_Nf) loss_val = loss_u + loss_f return loss_val 'callable for optimizer' def closure(self): optimizer.zero_grad() loss = self.loss(X_train_Nu, U_train_Nu, X_train_Nf) print(loss) loss.backward() # self.iter += 1 # # if self.iter % 100 == 0: # error_vec, _ = PINN.test() # # print(loss, error_vec) return loss 'test neural network' def test(self): u_pred = self.forward(X_test) error_vec = torch.linalg.norm((u - u_pred), 2) / torch.linalg.norm(u, 2) # Relative L2 Norm of the error (Vector) u_pred = u_pred.cpu().detach().numpy() u_pred = np.reshape(u_pred, (256, 100), order='F') return error_vec, u_pred data = scipy.io.loadmat('./result/burgers_shock.mat') x = data['x'] # 256 points between -1 and 1 [256x1] t = data['t'] # 100 time points between 0 and 1 [100x1] usol = data['usol'] # solution of 256x100 grid points X, T = np.meshgrid(x,t) # makes 2 arrays X and T such that u(X[i],T[j])=usol[i][j] are a tuple plot3D(torch.from_numpy(x),torch.from_numpy(t),torch.from_numpy(usol)) #f_real was defined previously(function) print(x.shape,t.shape,usol.shape) print(X.shape,T.shape) X_test = np.hstack((X.flatten()[:,None], T.flatten()[:,None])) # Domain bounds lb = X_test[0] # [-1. 0.] ub = X_test[-1] # [1. 0.99] u_true = usol.flatten('F')[:,None] #Fortran style (Column Major) print(lb,ub) '''Boundary Conditions''' #Initial Condition -1 =< x =<1 and t = 0 left_X = np.hstack((X[0,:][:,None], T[0,:][:,None])) #L1 left_U = usol[:,0][:,None] #Boundary Condition x = -1 and 0 =< t =<1 bottom_X = np.hstack((X[:,0][:,None], T[:,0][:,None])) #L2 bottom_U = usol[-1,:][:,None] #Boundary Condition x = 1 and 0 =< t =<1 top_X = np.hstack((X[:,-1][:,None], T[:,0][:,None])) #L3 top_U = usol[0,:][:,None] X_train = np.vstack([left_X, bottom_X, top_X]) U_train = np.vstack([left_U, bottom_U, top_U]) #choose random N_u points for training idx = np.random.choice(X_train.shape[0], N_u, replace=False) X_train_Nu = X_train[idx, :] #choose indices from set 'idx' (x,t) U_train_Nu = U_train[idx,:] #choose corresponding u '''Collocation Points''' # Latin Hypercube sampling for collocation points # N_f sets of tuples(x,t) X_train_Nf = lb + (ub-lb)*lhs(2,N_f) X_train_Nf = np.vstack((X_train_Nf, X_train_Nu)) # append training points to collocation points print("Original shapes for X and U:",X.shape,usol.shape) print("Boundary shapes for the edges:",left_X.shape,bottom_X.shape,top_X.shape) print("Available training data:",X_train.shape,U_train.shape) print("Final training data:",X_train_Nu.shape,U_train_Nu.shape) print("Total collocation points:",X_train_Nf.shape) 'Convert to tensor and send to GPU' X_train_Nf = torch.Tensor(X_train_Nf).float().to(device) X_train_Nu = torch.Tensor(X_train_Nu).float().to(device) U_train_Nu = torch.from_numpy(U_train_Nu).float().to(device) X_test = torch.from_numpy(X_test).float().to(device) u = torch.from_numpy(u_true).float().to(device) f_hat = torch.zeros(X_train_Nf.shape[0], 1).to(device) PINN = FCN(layers) PINN.to(device) 'Neural Network Summary' print(PINN) params = list(PINN.parameters()) '''Optimization''' optimizer1 = torch.optim.Adam(PINN.parameters(), lr1) 'L-BFGS Optimizer' optimizer = torch.optim.LBFGS(PINN.parameters(), lr, max_iter=steps, max_eval=None, tolerance_grad=1e-11, tolerance_change=1e-11, history_size=100, line_search_fn='strong_wolfe') for epoch in range(epoches): optimizer1.zero_grad() loss = loss = PINN.loss(X_train_Nu, U_train_Nu, X_train_Nf) print("Adam loss:",loss) loss.backward() optimizer1.step() start_time = time.time() optimizer.step(PINN.closure) elapsed = time.time() - start_time print('Training time: %.2f' % (elapsed)) ''' Model Accuracy ''' error_vec, u_pred = PINN.test() print('Test Error: %.5f' % (error_vec)) solutionplot(u_pred,X_train_Nu.cpu().detach().numpy(),U_train_Nu) x1=X_test[:,0] t1=X_test[:,1] arr_x1=x1.reshape(shape=X.shape).transpose(1,0).detach().cpu() arr_T1=t1.reshape(shape=X.shape).transpose(1,0).detach().cpu() arr_y1=u_pred arr_y_test=usol plot3D(torch.from_numpy(x),torch.from_numpy(t),torch.from_numpy(usol))