基于pytorch的PINN代码

import torch
import torch.autograd as autograd         # computation graph
from torch import Tensor                  # tensor node in the computation graph
import torch.nn as nn                     # neural networks
import torch.optim as optim               # optimizers e.g. gradient descent, ADAM, etc.

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from mpl_toolkits.axes_grid1 import make_axes_locatable
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.ticker
from sklearn.model_selection import train_test_split

import numpy as np
import time
from pyDOE import lhs         #Latin Hypercube Sampling
import scipy.io

#Set default dtype to float32
torch.set_default_dtype(torch.float)

#PyTorch random number generator
torch.manual_seed(1234)

# Random number generators in other libraries
np.random.seed(1234)

# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print(device)

if device == 'cuda':
    print(torch.cuda.get_device_name())
steps=10000
lr=1e-1
lr1 = 0.001
layers = np.array([2,20,20,20,20,20,20,20,20,1]) #8 hidden layers
#Nu: Number of training points # Nf: Number of collocation points (Evaluate PDE)
N_u = 100 #Total number of data points for 'u'
N_f = 10000 #Total number of collocation points
nu = 0.01/np.pi #diffusion coeficient
epoches = 1000

def plot3D(x,t,y):
  x_plot =x.squeeze(1)
  t_plot =t.squeeze(1)
  X,T= torch.meshgrid(x_plot,t_plot)
  F_xt = y
  fig,ax=plt.subplots(1,1)
  cp = ax.contourf(T,X, F_xt,20,cmap="rainbow")
  fig.colorbar(cp) # Add a colorbar to a plot
  ax.set_title('F(x,t)')
  ax.set_xlabel('t')
  ax.set_ylabel('x')
  plt.show()
  ax = plt.axes(projection='3d')
  ax.plot_surface(T.numpy(), X.numpy(), F_xt.numpy(),cmap="rainbow")
  ax.set_xlabel('t')
  ax.set_ylabel('x')
  ax.set_zlabel('f(x,t)')
  plt.show()

def plot3D_Matrix(x, t, y):
  X, T = x, t
  F_xt = y
  fig, ax = plt.subplots(1, 1)
  cp = ax.contourf(T, X, F_xt, 20, cmap="rainbow")
  fig.colorbar(cp)  # Add a colorbar to a plot
  ax.set_title('F(x,t)')
  ax.set_xlabel('t')
  ax.set_ylabel('x')
  plt.show()
  ax = plt.axes(projection='3d')
  ax.plot_surface(T.numpy(), X.numpy(), F_xt.numpy(), cmap="rainbow")
  ax.set_xlabel('t')
  ax.set_ylabel('x')
  ax.set_zlabel('f(x,t)')
  plt.show()


def solutionplot(u_pred, X_u_train, u_train):
    # https://github.com/omniscientoctopus/Physics-Informed-Neural-Networks

    fig, ax = plt.subplots()
    ax.axis('off')

    gs0 = gridspec.GridSpec(1, 2)
    gs0.update(top=1 - 0.06, bottom=1 - 1 / 3, left=0.15, right=0.85, wspace=0)
    ax = plt.subplot(gs0[:, :])

    h = ax.imshow(u_pred, interpolation='nearest', cmap='rainbow',
                  extent=[T.min(), T.max(), X.min(), X.max()],
                  origin='lower', aspect='auto')
    divider = make_axes_locatable(ax)
    cax = divider.append_axes("right", size="5%", pad=0.05)
    fig.colorbar(h, cax=cax)

    ax.plot(X_u_train[:, 1], X_u_train[:, 0], 'kx', label='Data (%d points)' % (u_train.shape[0]), markersize=4,
            clip_on=False)

    line = np.linspace(x.min(), x.max(), 2)[:, None]
    ax.plot(t[25] * np.ones((2, 1)), line, 'w-', linewidth=1)
    ax.plot(t[50] * np.ones((2, 1)), line, 'w-', linewidth=1)
    ax.plot(t[75] * np.ones((2, 1)), line, 'w-', linewidth=1)

    ax.set_xlabel('$t$')
    ax.set_ylabel('$x$')
    ax.legend(frameon=False, loc='best')
    ax.set_title('$u(x,t)$', fontsize=10)

    ''' 
    Slices of the solution at points t = 0.25, t = 0.50 and t = 0.75
    '''

    ####### Row 1: u(t,x) slices ##################
    gs1 = gridspec.GridSpec(1, 3)
    gs1.update(top=1 - 1 / 3, bottom=0, left=0.1, right=0.9, wspace=0.5)

    ax = plt.subplot(gs1[0, 0])
    ax.plot(x, usol.T[25, :], 'b-', linewidth=2, label='Exact')
    ax.plot(x, u_pred.T[25, :], 'r--', linewidth=2, label='Prediction')
    ax.set_xlabel('$x$')
    ax.set_ylabel('$u(x,t)$')
    ax.set_title('$t = 0.25s$', fontsize=10)
    ax.axis('square')
    ax.set_xlim([-1.1, 1.1])
    ax.set_ylim([-1.1, 1.1])

    ax = plt.subplot(gs1[0, 1])
    ax.plot(x, usol.T[50, :], 'b-', linewidth=2, label='Exact')
    ax.plot(x, u_pred.T[50, :], 'r--', linewidth=2, label='Prediction')
    ax.set_xlabel('$x$')
    ax.set_ylabel('$u(x,t)$')
    ax.axis('square')
    ax.set_xlim([-1.1, 1.1])
    ax.set_ylim([-1.1, 1.1])
    ax.set_title('$t = 0.50s$', fontsize=10)
    ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.35), ncol=5, frameon=False)

    ax = plt.subplot(gs1[0, 2])
    ax.plot(x, usol.T[75, :], 'b-', linewidth=2, label='Exact')
    ax.plot(x, u_pred.T[75, :], 'r--', linewidth=2, label='Prediction')
    ax.set_xlabel('$x$')
    ax.set_ylabel('$u(x,t)$')
    ax.axis('square')
    ax.set_xlim([-1.1, 1.1])
    ax.set_ylim([-1.1, 1.1])
    ax.set_title('$t = 0.75s$', fontsize=10)

    plt.savefig('Burgers.png', dpi=500)

class FCN(nn.Module):

    def __init__(self, layers):
        super().__init__()  # call __init__ from parent class

        'activation function'
        self.activation = nn.Tanh()

        'loss function'
        self.loss_function = nn.MSELoss(reduction='mean')

        'Initialise neural network as a list using nn.Modulelist'
        self.linears = nn.ModuleList([nn.Linear(layers[i], layers[i + 1]) for i in range(len(layers) - 1)])

        self.iter = 0

        'Xavier Normal Initialization'
        for i in range(len(layers) - 1):
            nn.init.xavier_normal_(self.linears[i].weight.data, gain=1.0) #Xavier正态分布
            wwww = self.linears[i].weight.data
            # set biases to zero
            nn.init.zeros_(self.linears[i].bias.data)

    'foward pass'

    def forward(self, x):

        if torch.is_tensor(x) != True:
            x = torch.from_numpy(x)

        u_b = torch.from_numpy(ub).float().to(device)
        l_b = torch.from_numpy(lb).float().to(device)

        # preprocessing input
        x = (x - l_b) / (u_b - l_b)  # feature scaling

        # convert to float
        a = x.float()

        for i in range(len(layers) - 2):
            z = self.linears[i](a)

            a = self.activation(z)

        a = self.linears[-1](a)

        return a

    def loss_BC(self, x, y):

        loss_u = self.loss_function(self.forward(x), y)

        return loss_u

    def loss_PDE(self, X_train_Nf):

        g = X_train_Nf.clone()

        g.requires_grad = True

        u = self.forward(g)

        u_x_t = \
        autograd.grad(u, g, torch.ones([X_train_Nf.shape[0], 1]).to(device), retain_graph=True, create_graph=True)[0]

        u_xx_tt = autograd.grad(u_x_t, g, torch.ones(X_train_Nf.shape).to(device), create_graph=True)[0]

        u_x = u_x_t[:, [0]]

        u_t = u_x_t[:, [1]]

        u_xx = u_xx_tt[:, [0]]

        f = u_t + (self.forward(g)) * (u_x) - (nu) * u_xx

        loss_f = self.loss_function(f, f_hat)

        return loss_f

    def loss(self, x, y, X_train_Nf):

        loss_u = self.loss_BC(x, y)
        loss_f = self.loss_PDE(X_train_Nf)

        loss_val = loss_u + loss_f

        return loss_val

    'callable for optimizer'

    def closure(self):

        optimizer.zero_grad()

        loss = self.loss(X_train_Nu, U_train_Nu, X_train_Nf)
        print(loss)

        loss.backward()

        # self.iter += 1
        #
        # if self.iter % 100 == 0:
        #     error_vec, _ = PINN.test()
        #
        #     print(loss, error_vec)

        return loss

    'test neural network'

    def test(self):

        u_pred = self.forward(X_test)

        error_vec = torch.linalg.norm((u - u_pred), 2) / torch.linalg.norm(u, 2)  # Relative L2 Norm of the error (Vector)

        u_pred = u_pred.cpu().detach().numpy()

        u_pred = np.reshape(u_pred, (256, 100), order='F')

        return error_vec, u_pred

data = scipy.io.loadmat('./result/burgers_shock.mat')
x = data['x']                                   # 256 points between -1 and 1 [256x1]
t = data['t']                                   # 100 time points between 0 and 1 [100x1]
usol = data['usol']                             # solution of 256x100 grid points

X, T = np.meshgrid(x,t)                         # makes 2 arrays X and T such that u(X[i],T[j])=usol[i][j] are a tuple
plot3D(torch.from_numpy(x),torch.from_numpy(t),torch.from_numpy(usol)) #f_real was defined previously(function)
print(x.shape,t.shape,usol.shape)
print(X.shape,T.shape)
X_test = np.hstack((X.flatten()[:,None], T.flatten()[:,None]))

# Domain bounds
lb = X_test[0]  # [-1. 0.]
ub = X_test[-1] # [1.  0.99]
u_true = usol.flatten('F')[:,None] #Fortran style (Column Major)

print(lb,ub)

'''Boundary Conditions'''

#Initial Condition -1 =< x =<1 and t = 0
left_X = np.hstack((X[0,:][:,None], T[0,:][:,None])) #L1
left_U = usol[:,0][:,None]

#Boundary Condition x = -1 and 0 =< t =<1
bottom_X = np.hstack((X[:,0][:,None], T[:,0][:,None])) #L2
bottom_U = usol[-1,:][:,None]

#Boundary Condition x = 1 and 0 =< t =<1
top_X = np.hstack((X[:,-1][:,None], T[:,0][:,None])) #L3
top_U = usol[0,:][:,None]

X_train = np.vstack([left_X, bottom_X, top_X])
U_train = np.vstack([left_U, bottom_U, top_U])

#choose random N_u points for training
idx = np.random.choice(X_train.shape[0], N_u, replace=False)

X_train_Nu = X_train[idx, :] #choose indices from  set 'idx' (x,t)
U_train_Nu = U_train[idx,:]      #choose corresponding u

'''Collocation Points'''

# Latin Hypercube sampling for collocation points
# N_f sets of tuples(x,t)
X_train_Nf = lb + (ub-lb)*lhs(2,N_f)
X_train_Nf = np.vstack((X_train_Nf, X_train_Nu)) # append training points to collocation points

print("Original shapes for X and U:",X.shape,usol.shape)
print("Boundary shapes for the edges:",left_X.shape,bottom_X.shape,top_X.shape)
print("Available training data:",X_train.shape,U_train.shape)
print("Final training data:",X_train_Nu.shape,U_train_Nu.shape)
print("Total collocation points:",X_train_Nf.shape)

'Convert to tensor and send to GPU'
X_train_Nf = torch.Tensor(X_train_Nf).float().to(device)
X_train_Nu = torch.Tensor(X_train_Nu).float().to(device)
U_train_Nu = torch.from_numpy(U_train_Nu).float().to(device)
X_test = torch.from_numpy(X_test).float().to(device)
u = torch.from_numpy(u_true).float().to(device)
f_hat = torch.zeros(X_train_Nf.shape[0], 1).to(device)

PINN = FCN(layers)

PINN.to(device)

'Neural Network Summary'
print(PINN)

params = list(PINN.parameters())


'''Optimization'''
optimizer1 = torch.optim.Adam(PINN.parameters(), lr1)
'L-BFGS Optimizer'
optimizer = torch.optim.LBFGS(PINN.parameters(), lr,
                              max_iter=steps,
                              max_eval=None,
                              tolerance_grad=1e-11,
                              tolerance_change=1e-11,
                              history_size=100,
                              line_search_fn='strong_wolfe')

for epoch in range(epoches):
    optimizer1.zero_grad()
    loss = loss = PINN.loss(X_train_Nu, U_train_Nu, X_train_Nf)
    print("Adam loss:",loss)
    loss.backward()
    optimizer1.step()
start_time = time.time()

optimizer.step(PINN.closure)

elapsed = time.time() - start_time

print('Training time: %.2f' % (elapsed))

''' Model Accuracy '''
error_vec, u_pred = PINN.test()

print('Test Error: %.5f' % (error_vec))


solutionplot(u_pred,X_train_Nu.cpu().detach().numpy(),U_train_Nu)

x1=X_test[:,0]
t1=X_test[:,1]

arr_x1=x1.reshape(shape=X.shape).transpose(1,0).detach().cpu()
arr_T1=t1.reshape(shape=X.shape).transpose(1,0).detach().cpu()
arr_y1=u_pred
arr_y_test=usol

plot3D(torch.from_numpy(x),torch.from_numpy(t),torch.from_numpy(usol))






你可能感兴趣的:(python,django,mysql,memcached)