支持对抗样本防御的AI加速器架构设计

看到一个综述文章,感觉支持对抗样本防御的AI加速器架构设计好像是个新方向呀。DNN加速器架构设计还能继续挖么。。。。。。。。找到几个相关的文献。。2-in-1 accelerator的文章对这个方向很看好,值得搞加速器的小伙伴关注下。

  1. Wang X, Hou R, Zhao B, et al. Dnnguard: An elastic heterogeneous dnn accelerator architecture against adversarial attacks[C]//Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems. 2020: 19-34.
  2. Gan Y, Qiu Y, Leng J, et al. Ptolemy: Architecture support for robust deep learning[C]//2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 2020: 241-255.
  3. Wang X, Zhao B, Hou R, et al. NASGuard: a novel accelerator architecture for robust neural architecture search (NAS) networks[C]//2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2021: 776-789.
  4. Fu Y, Zhao Y, Yu Q, et al. 2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency[C]//MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture. 2021: 225-237.

你可能感兴趣的:(DNN加速器架构设计,深度学习,神经网络,机器学习,硬件架构)