Linux 并发与竞争

介绍

Linux是一个多任务操作系统,肯定会存在多个任务共同操作同一段内存或者设备的情况,多个任务甚至中断都能访问的资源叫做共享资源,就和共享单车一样。在驱动开发中要注意对共享资源的保护,也就是要处理对共享资源的并发访问。比如共享单车,大家按照谁扫谁骑走的原则来共用这个单车,如果没有这个并发访问共享单车的原则存在,只怕到时候为了一辆单车要打起来了。在 Linux 驱动编写过程中对于并发控制的管理非常重要,本章我们就来学习一下如何在 Linux 驱动中处理并发。

并发与竞争

并发与竞争简介

Linux 系统是个多任务操作系统,会存在多个任务同时访问同一片内存区域,这些任务可能会相互覆盖这段内存中的数据,造成内存数据混乱。针对这个问题必须要做处理,严重的话可能会导致系统崩溃。

现在的 Linux 系统并发产生的原因很复杂,总结一下有下面几个主要原因:

  1. 多线程并发访问, Linux 是多任务(线程)的系统,所以多线程访问是最基本的原因。
  2. 抢占式并发访问,从 2.6 版本内核开始, Linux 内核支持抢占,也就是说调度程序可以在任意时刻抢占正在运行的线程,从而运行其他的线程。
  3. 中断程序并发访问,这个无需多说,学过 STM32 的同学应该知道,硬件中断的权利可是很大的。
  4. SMP(多核)核间并发访问,现在 ARM 架构的多核 SOC 很常见,多核 CPU 存在核间并发访问。

并发访问带来的问题就是竞争,学过FreeRTOS和UCOS的同学应该知道临界区这个概念,所谓的临界区就是共享数据段,对于临界区必须保证一次只有一个线程访。

原子操作只能对整形变量或者位进行保护

保护内容是什么

什么是共享资源?一般像全局变量,设备结构体这些肯定是要保护的。

原子操作

原子操作简介

首先看一下原子操作,原子操作就是指不能再进一步分割的操作,一般原子操作用于变量或者位操作。例如:

a = 3;

但是 C 语言要先编译为成汇编指令, ARM 架构不支持直接对寄存器进行读写操作,比如要借助寄存器 R0、 R1 等来完成赋值操作。假设变量 a 的地址为 0X3000000,“a=3”这一行 C语言可能会被编译为如下所示的汇编代码:

ldr r0, =0X30000000 /* 变量 a 地址 */
ldr r1, = 3 /* 要写入的值 */
str r1, [r0] /* 将 3 写入到 a 变量中 */

从上述代码可以看出, C 语言里面简简单单的一句“a=3”,编译成汇编文件以后变成了 3 句。
假设现在线程 A要向 a 变量写入 10 这个值,而线程 B 也要向 a 变量写入 20 这个值,我们理想中的执行顺序如图所示

Linux 并发与竞争_第1张图片
但是实际不是这样的
Linux 并发与竞争_第2张图片
线程 A 最终将变量 a 设置为了 20,而并不是要求的 10!线程B 没有问题。这就是一个最简单的设置变量值的并发与竞争的例子。

原子整形操作 API 函数

Linux 内核定义了叫做 atomic_t 的结构体来完成整形数据的原子操作,在使用中用原子变量来代替整形变量,此结构体定义在include/linux/types.h 文件中,定义如下:

typedef struct {
	int counter;
} atomic_t;

如果要使用原子操作 API 函数,首先要先定义一个 atomic_t 的变量,如下所示:

atomic_t a; //定义 a

也可以在定义原子变量的时候给原子变量赋初值

atomic_t b = ATOMIC_INIT(0); //定义原子变量 b 并赋初值为 0

可以通过宏 ATOMIC_INIT 向原子变量赋初值。
Linux 并发与竞争_第3张图片
如果使用 64 位的 SOC 的话,就要用到 64 位的原子变量

typedef struct {
	long long counter;
} atomic64_t;

和表中的 API 函数有用法一样,只是将“atomic_”前缀换为“atomic64_”,将 int 换为 long long。如
果使用的是 64 位的 SOC,那么就要使用 64 位的原子操作函数。 Cortex-A7 是 32 位的架构,所
以只说明32 位原子操作函数。

原子变量和相应的 API 函数使用起来很简单

atomic_t v = ATOMIC_INIT(0); /* 定义并初始化原子变零 v=0 */
atomic_set(&v, 10); /* 设置 v=10 */
atomic_read(&v); /* 读取 v 的值,肯定是 10 */
atomic_inc(&v); /* v 的值加 1, v=11 */

原子位操作 API 函数

位操作也是很常用的操作, Linux 内核也提供了一系列的原子位操作 API 函数,只不过原子位操作不像原子整形变量那样有个 atomic_t 的数据结构,原子位操作是直接对内存进行操作,API 函数如表所示:

函数 描述
void set_bit(int nr, void *p) 将 p 地址的第 nr 位置 1
void clear_bit(int nr,void *p) 将 p 地址的第 nr 位清零
void change_bit(int nr, void *p) 将 p 地址的第 nr 位进行翻转
int test_bit(int nr, void *p) 获取 p 地址的第 nr 位的值
int test_and_set_bit(int nr, void *p) 将 p 地址的第 nr 位置 1,并且返回 nr 位原来的值
int test_and_clear_bit(int nr, void *p) 将 p 地址的第 nr 位清零,并且返回 nr 位原来的值
int test_and_change_bit(int nr, void *p) 将 p 地址的第 nr 位翻转,并且返回 nr 位原来的值

自旋锁

自旋锁简介

在线程 A 对结构体变量使用期间,应该禁止其他的线程来访问此结构体变量,这些工作原子操作都不能胜任,需要本节要讲的锁机制,在 Linux内核中就是自旋锁。

锁只能被一个线程持有,只要此线程不释放持有的锁,那么其他的线程就不能获取此锁。对于自旋锁而言,如果自旋锁正在被线程 A 持有,线程 B 想要获取自旋锁,那么线程 B 就会处于忙循环-旋转-等待状态,线程 B 不会进入休眠状态或者说去做其他的处理,而是会一直傻傻的在那里“转圈圈”的等待锁可用
从这里我们可以看到自旋锁的一个缺点:那就等待自旋锁的线程会一直处于自旋状态,这样会浪费处理器时间,降低系统性能,所以自旋锁的持有时间不能太长。所以自旋锁适用于短时期的轻量级加锁,如果遇到需要长时间持有锁的场景那就需要换其他的方法了。

typedef struct spinlock {
	union {
		struct raw_spinlock rlock;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
# define LOCK_PADSIZE (offsetof(struct raw_spinlock, dep_map))
		struct {
			u8 __padding[LOCK_PADSIZE];
			struct lockdep_map dep_map;
		};
#endif
	};
} spinlock_t;

在使用自旋锁之前,肯定要先定义一个自旋锁变量,定义方法如下所示:

spinlock_t lock; //定义自旋锁

定义好自旋锁变量以后就可以使用相应的 API 函数来操作自旋锁。

自旋锁 API 函数

函数 描述
DEFINE_SPINLOCK(spinlock_t lock) 定义并初始化一个自选变量
int spin_lock_init(spinlock_t *lock) 初始化自旋锁
void spin_lock(spinlock_t *lock) 获取指定的自旋锁,也叫做加锁
void spin_unlock(spinlock_t *lock) 释放指定的自旋锁
int spin_trylock(spinlock_t *lock) 尝试获取指定的自旋锁,如果没有获取到就返回 0
int spin_is_locked(spinlock_t *lock) 检查指定的自旋锁是否被获取,如果没有被获取就返回非 0,否则返回 0

自旋锁API函数适用于SMP或支持抢占的单CPU下线程之间的并发访问,也就是用于线程与线程之间,被自旋锁保护的临界区一定不能调用任何能够引起睡眠和阻塞的API 函数,否则的话会可能会导致死锁现象的发生。

自旋锁会自动禁止抢占。

中断里面可以使用自旋锁,但是在中断里面使用自旋锁的时候,在获取锁之前一定要先禁止本地中断(也就是本 CPU 中断,对于多核 SOC来说会有多个 CPU 核),否则可能导致锁死现象的发生。
获取锁之前关闭本地中断, Linux 内核提供了相应的 API 函数

函数 描述
void spin_lock_irq(spinlock_t *lock) 禁止本地中断,并获取自旋锁
void spin_unlock_irq(spinlock_t *lock) 激活本地中断,并释放自旋锁
void spin_lock_irqsave(spinlock_t *lock,unsigned long flags) 保存中断状态,禁止本地中断,并获取自旋锁
void spin_unlock_irqrestore(spinlock_t*lock, unsigned long flags) 将中断状态恢复到以前的状态,并且激活本地中断,释放自旋锁

确定加锁之前的中断状态,但实际上内核很庞大,运行也是“千变万化”,我们是很难确定某个时刻的中断状态,因此不推荐使用spin_lock_irq/spin_unlock_irq。建议使用 spin_lock_irqsave/ spin_unlock_irqrestore,因为这一组函数会保存中断状态,在释放锁的时候会恢复中断状态。一般在线程中使用 spin_lock_irqsave/spin_unlock_irqrestore,在中断中使用 spin_lock/spin_unlock,示例代码如下所示

DEFINE_SPINLOCK(lock) /* 定义并初始化一个锁 */
/* 线程 A */
void functionA (){
	unsigned long flags; /* 中断状态 */
	spin_lock_irqsave(&lock, flags) /* 获取锁 */
	/* 临界区 */
	spin_unlock_irqrestore(&lock, flags) /* 释放锁 */
}
/* 中断服务函数 */
void irq() {
	spin_lock(&lock) /* 获取锁 */
	/* 临界区 */
	spin_unlock(&lock) /* 释放锁 */
}

下半部(BH)也会竞争共享资源,有些资料也会将下半部叫做底半部

函数 描述
void spin_lock_bh(spinlock_t *lock) 关闭下半部,并获取自旋锁
void spin_unlock_bh(spinlock_t *lock) 打开下半部,并释放自旋锁

自旋锁使用注意事项

  1. 因为在等待自旋锁的时候处于“自旋”状态,因此锁的持有时间不能太长,一定要短,否则的话会降低系统性能。如果临界区比较大,运行时间比较长的话要选择其他的并发处理方式,比如稍后要讲的信号量和互斥体。
  2. 自旋锁保护的临界区内不能调用任何可能导致线程休眠的 API 函数,否则的话可能导致死锁。
  3. 不能递归申请自旋锁,因为一旦通过递归的方式申请一个你正在持有的锁,那么你就必须“自旋”,等待锁被释放,然而你正处于“自旋”状态,根本没法释放锁。结果就是自己把自己锁死了!
  4. 在编写驱动程序的时候我们必须考虑到驱动的可移植性,因此不管你用的是单核的还是多核的 SOC,都将其当做多核 SOC 来编写驱动程序。

其他类型的锁

在自旋锁的基础上还衍生出了其他特定场合使用的锁,这些锁在驱动中其实用的不多,更多的是在 Linux 内核中使用

读写自旋锁

读写自旋锁为读和写操作提供了不同的锁,一次只能允许一个写操作,也就是只能一个线程持有写锁,而且不能进行读操作。但是当没有写操作的时候允许一个或多个线程持有读锁,可以进行并发的读操作。 Linux 内核使用 rwlock_t 结构体表示读写锁,结构体定义如下(删除了条件编译):

typedef struct {
	arch_rwlock_t raw_lock;
} rwlock_t;

读写锁操作 API 函数分为两部分,一个是给读使用的,一个是给写使用的

函数 描述
DEFINE_RWLOCK(rwlock_t lock) 定义并初始化读写锁
void rwlock_init(rwlock_t *lock) 初始化读写锁
读锁
函数 描述
void read_lock(rwlock_t *lock) 获取读锁
void read_unlock(rwlock_t *lock) 释放读锁
void read_lock_irq(rwlock_t *lock) 禁止本地中断,并且获取读锁
void read_unlock_irq(rwlock_t *lock) 打开本地中断,并且释放读锁
void read_lock_irqsave(rwlock_t *lock,unsigned long flags) 保存中断状态,禁止本地中断,并获取读锁
void read_unlock_irqrestore(rwlock_t *lock,unsigned long flags) 将中断状态恢复到以前的状态,并且激活本地中断,释放读锁
void read_lock_bh(rwlock_t *lock) 关闭下半部,并获取读锁
void read_unlock_bh(rwlock_t *lock) 打开下半部,并释放读锁
写锁
函数 描述
void write_lock(rwlock_t *lock) 获取写锁
void write_unlock(rwlock_t *lock) 释放写锁
void write_lock_irq(rwlock_t *lock) 禁止本地中断,并且获取写锁
void write_unlock_irq(rwlock_t *lock) 打开本地中断,并且释放写锁
void write_lock_irqsave(rwlock_t *lock,unsigned long flags) 保存中断状态,禁止本地中断,并获取写锁
void write_unlock_irqrestore(rwlock_t *lock,unsigned long flags) 将中断状态恢复到以前的状态,并且激活本地中断,释放读锁
void write_lock_bh(rwlock_t *lock) 关闭下半部,并获取读锁
void write_unlock_bh(rwlock_t *lock) 打开下半部,并释放读锁

顺序锁

顺序锁在读写锁的基础上衍生而来的,使用读写锁的时候读操作和写操作不能同时进行。

使用顺序锁的话可以允许在写的时候进行读操作,也就是实现同时读写,但是不允许同时进行并发的写操作。虽然顺序锁的读和写操作可以同时进行,但是如果在读的过程中发生了写操作,最好重新进行读取,保证数据完整性。顺序锁保护的资源不能是指针,因为如果在写操作的时候可能会导致指针无效,而这个时候恰巧有读操作访问指针的话就可能导致意外发生,比如读取野指针导致系统崩溃。

Linux 内核使用 seqlock_t 结构体表示顺序锁,结构体定义如下:

typedef struct {
	struct seqcount seqcount;
	spinlock_t lock;
} seqlock_t;

关于顺序锁的 API 函数如表

函数 描述
DEFINE_SEQLOCK(seqlock_t sl) 定义并初始化顺序锁
void seqlock_ini seqlock_t *sl) 初始化顺序锁
顺序锁写操作
函数 描述
void write_seqlock(seqlock_t *sl) 获取写顺序锁
void write_sequnlock(seqlock_t *sl) 释放写顺序锁
void write_seqlock_irq(seqlock_t *sl) 禁止本地中断,并且获取写顺序锁
void write_sequnlock_irq(seqlock_t *sl) 打开本地中断,并且释放写顺序锁
void write_seqlock_irqsave(seqlock_t *sl,unsigned long flags) 保存中断状态,禁止本地中断,并获取写顺序锁
void write_sequnlock_irqrestore(seqlock_t *sl,unsigned long flags) 将中断状态恢复到以前的状态,并且激活本地中断,释放写顺序锁
void write_seqlock_bh(seqlock_t *sl) 关闭下半部,并获取写读锁
void write_sequnlock_bh(seqlock_t *sl) 打开下半部,并释放写读锁
顺序锁读操作
函数 描述
unsigned read_seqbegin(const seqlock_t *sl) 读单元访问共享资源的时候调用此函数,此函数会返回顺序锁的顺序号
unsigned read_seqretry(const seqlock_t *sl,unsigned start) 读结束以后调用此函数检查在读的过程中有没有对资源进行写操作,如果有的话就要重读

信号量

信号量简介

信号量可以使线程进入休眠状态,但是,信号量的开销要比自旋锁大,因为信号量使线程进入休眠状态以后会切换线程,切换线程就会有开销。

信号量的特点:

  1. 因为信号量可以使等待资源线程进入休眠状态,因此适用于那些占用资源比较久的场合。
  2. 因此信号量不能用于中断中,因为信号量会引起休眠,中断不能休眠。
  3. 如果共享资源的持有时间比较短,那就不适合使用信号量了,因为频繁的休眠、切换线程引起的开销要远大于信号量带来的那点优势。

信号量API

Linux 内核使用 semaphore 结构体表示信号量,结构体内容如下

struct semaphore {
	raw_spinlock_t lock;
	unsigned int count;
	struct list_head wait_list;
};

要想使用信号量就得先定义,然后初始化信号量。有关信号量的 API 函数如表

函数 描述
DEFINE_SEAMPHORE(name) 定义一个信号量,并且设置信号量的值为 1
void sema_init(struct semaphore *sem, int val) 初始化信号量 sem,设置信号量值为 val
void down(struct semaphore *sem) 获取信号量,因为会导致休眠,因此不能在中断中使用
int down_trylock(struct semaphore *sem) 尝试获取信号量,如果能获取到信号量就获取,并且返回 0。如果不能就返回非 0,并且不会进入休眠
int down_interruptible(struct semaphore *sem) 获取信号量,和 down 类似,只是使用 down 进入休眠状态的线程不能被信号打断。而使用此函数进入休眠以后是可以被信号打断的
void up(struct semaphore *sem) 释放信号量

信号量使用

struct semaphore sem; /* 定义信号量 */
sema_init(&sem, 1); /* 初始化信号量 */
down(&sem); /* 申请信号量 */
/* 临界区 */
up(&sem); /* 释放信号量 */

互斥体

互斥体简介

互斥访问表示一次只有一个线程可以访问共享资源,不能递归申请互斥体。
Linux 内核使用 mutex 结构体表示互斥体,定义如下(省略条件编译部分):

struct mutex {
	/* 1: unlocked, 0: locked, negative: locked, possible waiters */
	atomic_t count;
	spinlock_t wait_lock;
};

在使用 mutex 之前要先定义一个 mutex 变量。在使用 mutex 的时候要注意如下几点:

  1. mutex 可以导致休眠,因此不能在中断中使用 mutex,中断中只能使用自旋锁
  2. 和信号量一样, mutex 保护的临界区可以调用引起阻塞的 API 函数。
  3. 因为一次只有一个线程可以持有 mutex,因此,必须由 mutex 的持有者释放 mutex。并且 mutex 不能递归上锁和解锁。

互斥体 API 函数

有关互斥体的 API 函数如表

函数 描述
DEFINE_MUTEX(name) 定义并初始化一个 mutex 变量
void mutex_init(mutex *lock) 初始化 mutex
void mutex_lock(struct mutex *lock) 获取 mutex,也就是给 mutex 上锁。如果获取不到就进休眠
void mutex_unlock(struct mutex *lock) 释放 mutex,也就给 mutex 解锁
int mutex_trylock(struct mutex *lock) 尝试获取 mutex,如果成功就返回 1,如果失败就返回 0
int mutex_is_locked(struct mutex *lock) 判断 mutex 是否被获取,如果是的话就返回1,否则返回 0
int mutex_lock_interruptible(struct mutex *lock) 使用此函数获取信号量失败进入休眠以后可以被信号打断

互斥体的使用如下所示

struct mutex lock; /* 定义一个互斥体 */
mutex_init(&lock); /* 初始化互斥体 */
mutex_lock(&lock); /* 上锁 */
/* 临界区 */
mutex_unlock(&lock); /* 解锁 */

你可能感兴趣的:(Linux,linux)