Yolov5/Yolov7改进CVPR2023 FasterNet远超ShuffleNet、MobileNet、MobileViT,引入PConv结构map涨点的同时进一步降低参数量

1.FasterNet介绍

    为了设计快速神经网络,许多工作都集中在减少浮点运算(FLOPs)的数量上。然而,作者观察到FLOPs的这种减少不一定会带来延迟的类似程度的减少。这主要源于每秒低浮点运算(FLOPS)效率低下。为了实现更快的网络,作者重新回顾了FLOPs的运算符,并证明了如此低的FLOPS主要是由于运算符的频繁内存访问,尤其是深度卷积。因此,本文提出了一种新的partial convolution(PConv),通过同时减少冗余计算和内存访问可以更有效地提取空间特征。

     基于PConv进一步提出FasterNet,这是一个新的神经网络家族,它在广泛的设备上实现了比其他网络高得多的运行速度,而不影响各种视觉任务的准确性。例如,在ImageNet-1k上小型FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileVitXXS快3.1倍、3.1倍和2.5倍,同时准确度提高2.9%。
     又快又好!本文提出新的Partial卷积(PConv),同时减少冗余计算和内存访问,并进一步提出FasterNet:新的神经网络家族,在多个处理平台上运行速度更快,优于MobileVit等网络;

论文地址:https://arxiv.org/abs/2303.03667

github:

你可能感兴趣的:(YOLO)