安装elasticsearch

安装elasticsearch

1.部署单点es

1.1.创建网络

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:
es-net 是网络名字随便起

docker network create es-net

1.2.加载镜像

这里我们采用elasticsearch的7.12.1版本的镜像,上传 es.tar、kibana.tar

# 导入数据
docker load -i es.tar
docker load -i kibana.tar

同理还有kibana的tar包也需要这样做。

1.3.运行

运行docker命令,部署单点es:

docker run -d \
	--name es \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-logs:/usr/share/elasticsearch/logs \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":jvm堆内存大小,es是基于java的,默认是1G,想设置小点可以搞小点
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置http协议端口,给用户访问的
  • -p 9300:9300:端口映射配置 给es各个节点之间互联的端口

在浏览器中输入:http://192.168.150.101:9200 即可看到elasticsearch的响应结果:

安装elasticsearch_第1张图片

2.部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。

2.1.部署

运行docker命令,部署kibana

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置
  • kibana:7.12.1版本要和es保持一致

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

安装elasticsearch_第2张图片

此时,在浏览器输入地址访问:http://192.168.150.101:5601,即可看到结果

安装elasticsearch_第3张图片
选择右边的选项,自己玩。
里面提供了各种各样的管理,包括安全管理等。

2.2.DevTools

kibana中提供了一个DevTools界面:

安装elasticsearch_第4张图片

这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

3.安装IK分词器

官网:https://github.com/medcl/elasticsearch-analysis-ik

3.1.在线安装ik插件(较慢)

# 进入容器内部
docker exec -it elasticsearch /bin/bash

# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

#退出
exit
#重启容器
docker restart elasticsearch

3.2.离线安装ik插件(推荐)

1)查看数据卷目录

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:

docker volume inspect es-plugins

显示结果:

[
    {
        "CreatedAt": "2022-05-06T10:06:34+08:00",
        "Driver": "local",
        "Labels": null,
        "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
        "Name": "es-plugins",
        "Options": null,
        "Scope": "local"
    }
]

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。

2)解压缩分词器安装包

下面我们需要把课前资料中的ik分词器解压缩,重命名为ik

安装elasticsearch_第5张图片

3)上传到es容器的插件数据卷中

也就是/var/lib/docker/volumes/es-plugins/_data

安装elasticsearch_第6张图片

4)重启容器

# 4、重启容器
docker restart es
# 查看es日志
docker logs -f es

5)测试:

IK分词器包含两种模式:

  • ik_smart:最少切分

  • ik_max_word:最细切分

POST /_analyze
{
  "text": "求求你别出了,学不动了",
  "analyzer": "ik_max_word"
}

结果:

{
  "tokens" : [
    {
      "token" : "求求",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "求你",
      "start_offset" : 1,
      "end_offset" : 3,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "别出",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "出了",
      "start_offset" : 4,
      "end_offset" : 6,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "学",
      "start_offset" : 7,
      "end_offset" : 8,
      "type" : "CN_CHAR",
      "position" : 4
    },
    {
      "token" : "不动",
      "start_offset" : 8,
      "end_offset" : 10,
      "type" : "CN_WORD",
      "position" : 5
    },
    {
      "token" : "动了",
      "start_offset" : 9,
      "end_offset" : 11,
      "type" : "CN_WORD",
      "position" : 6
    }
  ]
}

3.3 扩展词词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“搞快点” 等。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录:

安装elasticsearch_第7张图片

2)在IKAnalyzer.cfg.xml配置文件内容添加:


DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置comment>
        
        <entry key="ext_dict">ext.dicentry>
properties>

3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

搞快点
奥力给

4)重启elasticsearch

docker restart es

# 查看 日志
docker logs -f elasticsearch

安装elasticsearch_第8张图片

日志中已经成功加载ext.dic配置文件

5)测试效果:

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "真的学不动了"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

3.4 停用词词典

在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于****等敏感词语,那么我们在搜索时也应该忽略当前词汇。

IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

1)IKAnalyzer.cfg.xml配置文件内容添加:


DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置comment>
        
        <entry key="ext_dict">ext.dicentry>
         
        <entry key="ext_stopwords">stopword.dicentry>
properties>

3)在 stopword.dic 添加停用词

xxx

4)重启elasticsearch

# 重启服务
docker restart elasticsearch
docker restart kibana

# 查看 日志
docker logs -f elasticsearch

日志中已经成功加载stopword.dic配置文件

5)测试效果:

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "奥力给!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

4.部署es集群

我们会在单机上利用docker容器运行多个es实例来模拟es集群。不过生产环境推荐大家每一台服务节点仅部署一个es的实例。

部署es集群可以直接使用docker-compose来完成,但这要求你的Linux虚拟机至少有4G的内存空间

4.1.创建es集群

es运行需要修改一些linux系统权限,修改/etc/sysctl.conf文件

vi /etc/sysctl.conf

添加下面的内容:

vm.max_map_count=262144

然后执行命令,让配置生效:

sysctl -p

首先编写一个docker-compose文件,内容如下:

version: '2.2'
services:
  es01:
    image: elasticsearch:7.12.1
    container_name: es01
    environment:
      - node.name=es01    # 节点名称
      - cluster.name=es-docker-cluster   # 集群名称
      - discovery.seed_hosts=es02,es03  # 其他节点的ip地址
      - cluster.initial_master_nodes=es01,es02,es03   # 候选节点
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data02:/usr/share/elasticsearch/data
    ports:
      - 9201:9200
    networks:
      - elastic
  es03:
    image: elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic
    ports:
      - 9202:9200
volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge

通过docker-compose启动集群:

docker-compose up -d

4.2.集群状态监控

kibana可以监控es集群,不过新版本需要依赖es的x-pack 功能,配置比较复杂。

这里推荐使用cerebro来监控es集群状态,官方网址:https://github.com/lmenezes/cerebro

课前资料已经提供了安装包:

安装elasticsearch_第9张图片

解压即可使用,非常方便。

解压好的目录如下:

安装elasticsearch_第10张图片

进入对应的bin目录:

安装elasticsearch_第11张图片

双击其中的cerebro.bat文件即可启动服务。

安装elasticsearch_第12张图片

访问http://localhost:9000 即可进入管理界面:

安装elasticsearch_第13张图片

输入你的elasticsearch的任意节点的地址和端口,点击connect即可:

安装elasticsearch_第14张图片

绿色的条,代表集群处于绿色(健康状态)。

4.3.创建索引库

1)利用kibana的DevTools创建索引库

在DevTools中输入指令:

PUT /itcast
{
  "settings": {
    "number_of_shards": 3, // 分片数量
    "number_of_replicas": 1 // 副本数量
  },
  "mappings": {
    "properties": {
      // mapping映射定义 ...
    }
  }
}

2)利用cerebro创建索引库

利用cerebro还可以创建索引库:

安装elasticsearch_第15张图片

填写索引库信息:

安装elasticsearch_第16张图片

点击右下角的create按钮:

安装elasticsearch_第17张图片

4.4.查看分片效果

回到首页,即可查看索引库分片效果:
安装elasticsearch_第18张图片

(健康状态)。

4.3.创建索引库

1)利用kibana的DevTools创建索引库

在DevTools中输入指令:

PUT /itcast
{
  "settings": {
    "number_of_shards": 3, // 分片数量
    "number_of_replicas": 1 // 副本数量
  },
  "mappings": {
    "properties": {
      // mapping映射定义 ...
    }
  }
}

2)利用cerebro创建索引库

利用cerebro还可以创建索引库:

安装elasticsearch_第19张图片

填写索引库信息:

安装elasticsearch_第20张图片

点击右下角的create按钮:

安装elasticsearch_第21张图片

4.4.查看分片效果

回到首页,即可查看索引库分片效果:

安装elasticsearch_第22张图片

你可能感兴趣的:(java)