- Docker容器如何实现分布式微服务:从0到1的深度解析
cda2024
docker分布式微服务
在当今云计算和大数据时代,企业面临的最大挑战之一是如何快速、稳定地部署和管理复杂的软件应用。传统的单体架构已难以满足现代互联网应用的需求,而分布式微服务架构成为了解决这一难题的关键。但问题随之而来:如何高效地构建和管理分布式微服务?Docker容器技术的出现为这个问题带来了新的曙光。它不仅简化了应用程序的打包和部署过程,还为微服务架构提供了强大的支持。本文将深入探讨Docker容器如何实现分布式微
- 2025年7月-9月广深地区学术会议征稿邀稿 | 2025年7-9月广州学术会议、深圳学术会议参会投稿 | 广深参会 EI 检索会议推荐 | 期待在广东与您相见,共襄学术盛举!
会议名称【点击会议名称查看详情】会议时间会议地点第四届能源与电力系统国际学术会议(ICEEPS2025)2025年7月17-19日广州第七届电子与通信,网络与计算机技术国际学术会议(ECNCT2025)2025年7月18-20日广州2025年人工智能与基础模型国际学术会议(AIFM2025)2025年7月18-20日广州第六届经济管理与大数据应用国际学术会议(ICEMBDA2025)2025年7月
- Python爬企查查网站数据的爬虫代码如何写?
cda2024
python爬虫开发语言
在大数据时代,数据的获取与分析变得尤为重要。企业信息查询平台“企查查”作为国内领先的企业信用信息查询工具,提供了丰富的企业数据资源。对于数据科学家和工程师而言,能够从这些平台高效地抓取数据,无疑是一项重要的技能。本文将详细介绍如何使用Python编写爬虫代码,从企查查网站抓取企业数据,并探讨其中的技术难点和解决方案。为什么选择Python?Python是一门广泛应用于数据科学和网络爬虫开发的语言,
- 如何利用AWS Lambda作为Serverless数据库进行大数据处理
AI天才研究院
AI人工智能与大数据自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术Serverless数据库一直是构建数据分析应用的主要选择之一。它能帮助客户节省运行服务所需的服务器成本、快速弹性扩展和自动伸缩能力,并且能提升整体性能,有效减少运维和开发资源投入。但是,在实际生产环境中,它们也面临着很多技术上的挑战,比如如何让Serverless数据库服务可以像传统数据库一样,做到高并发处理、实时计算等。而AWSLambda为Serverless数据
- 大数据领域数据产品的零售行业应用创新模式
大数据洞察
大数据与AI人工智能大数据零售单例模式ai
大数据领域数据产品的零售行业应用创新模式关键词:大数据、零售行业、数据产品、应用创新、客户洞察、智能决策、数字化转型摘要:本文深入探讨了大数据技术在零售行业中的应用创新模式。我们将从零售行业数字化转型的背景出发,分析大数据产品如何重塑零售价值链,包括客户洞察、供应链优化、精准营销和智能决策等方面。文章将详细介绍相关技术原理、算法实现和实际应用案例,为零售企业提供可操作的大数据应用框架和创新思路。1
- 大数据如何助力企业文化“软实力”升级?深挖数据背后的文化密码
Echo_Wish
大数据高阶实战秘籍大数据
大数据如何助力企业文化“软实力”升级?深挖数据背后的文化密码今天我们聊一个听起来很“软”的话题——企业文化,但从一个不太“软”的角度来看:大数据如何参与企业文化的建设与提升。企业文化往往被看作无形资产,是团队凝聚力、创新力的源泉。但传统“喊口号”式的文化建设常常效果有限。大数据技术的兴起,给我们提供了洞察员工心理、量化文化影响的新思路,让文化建设从“感性”走向“理性”,从“盲目”变得“精准”。一、
- Docker快速构建Hive测试环境
静谧星光
dockerhive容器编程
Docker是一种流行的容器化平台,可以帮助我们快速构建和管理应用程序的环境。在本文中,我们将学习如何使用Docker快速构建Hive测试环境。Hive是一个基于Hadoop的数据仓库基础设施,它提供了一种类似于SQL的查询语言,用于分析和处理大规模数据集。步骤1:安装Docker和DockerCompose首先,我们需要安装Docker和DockerCompose。您可以根据您的操作系统类型,从
- Docker快速部署Hive服务
长路 ㅤ
运维Docker配置Hive环境大数据远程调试
文章目录前言Docker快速配置hive环境资料获取前言博主介绍:✌目前全网粉丝4W+,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领域。涵盖技术内容:Java后端、大数据、算法、分布式微服务、中间件、前端、运维等。博主所有博客文件目录索引:博客目录索引(持续更新)CSDN搜索:长路视频平台:b站-Coder长路Docker快速配置hive环境Ap
- 从UI设计到数字孪生实战:构建智慧教育的个性化学习平台
hello宝子们...我们是艾斯视觉擅长ui设计、前端开发、数字孪生、大数据、三维建模、三维动画10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩!一、引言:数字孪生重构智慧教育的技术范式在教育数字化转型加速推进的背景下,传统在线教育正面临"个性化不足、学习体验单一、效果评估滞后"的瓶颈。教育部数据显示,采用数字孪生技术的智慧教育平台,学生学习效率平均提升35
- HDFS 伪分布模式搭建与使用全攻略(适合初学者 & 开发测试环境)
huihui450
hdfshadoop大数据
HDFS(HadoopDistributedFileSystem)作为Hadoop生态系统的核心组件,广泛应用于海量数据的分布式存储场景。对于开发者而言,伪分布模式提供了一种低成本、高还原度的学习与测试方式。本文将详细介绍如何在本地搭建并使用HDFS的伪分布模式,包括环境准备、配置过程、常用命令及常见问题排查,帮助你快速入门Hadoop分布式文件系统的实践操作。一、什么是伪分布模式?Hadoop有
- 每天一道大厂SQL题【Day25】脉脉真题实战(一)每日活跃用户_用户每日登陆脉脉会访问app不同的模块,现有两个表 表1记录了每日脉脉活跃用户的ui(1)
文章目录每天一道大厂SQL题【Day25】脉脉真题实战(一)每日活跃用户每日语录第25题:1.需求列表1.初级题:每日活跃用户思路分析(1)创建表(2)思路答案获取加技术群讨论附表文末SQL小技巧后记每天一道大厂SQL题【Day25】脉脉真题实战(一)每日活跃用户大家好,我是Maynor。相信大家和我一样,都有一个大厂梦,作为一名资深大数据选手,深知SQL重要性,接下来我准备用100天时间,基于大
- Spring Boot 项目启动时按需初始化加载数据
我叫晨曦啊
springbootspringbootjava后端
1、新建类,类上添加注解@Component,该类用于在项目启动时处理数据加载任务;2、该类实现ApplicationRunner接口,并重写run方法;3、在重写的run方法里处理数据加载任务;注意:有定时加载数据需求的话,添加定时任务即可;一次性加载大数据量时可能内存溢出;同一个项目中,可以定义多个ApplicationRunner的实现类;存在多个ApplicationRunner的实现类时
- 云原生--微服务、CICD、SaaS、PaaS、IaaS
青秋.
云原生docker云原生微服务kubernetesserverlessservice_meshci/cd
往期推荐浅学React和JSX-CSDN博客一文搞懂大数据流式计算引擎Flink【万字详解,史上最全】-CSDN博客一文入门大数据准流式计算引擎Spark【万字详解,全网最新】_大数据spark-CSDN博客目录1.云原生概念和特点2.常见云模式3.云对外提供服务的架构模式3.1IaaS(Infrastructure-as-a-Service)3.2PaaS(Platform-as-a-Servi
- Spark运行架构
EmoGP
Sparkspark架构大数据
Spark框架的核心是一个计算引擎,整体来说,它采用了标准master-slave的结构 如下图所示,它展示了一个Spark执行时的基本结构,图形中的Driver表示master,负责管理整个集群中的作业任务调度,图形中的Executor则是slave,负责实际执行任务。由上图可以看出,对于Spark框架有两个核心组件:DriverSpark驱动器节点,用于执行Spark任务中的main方法,负
- Spark 各种配置项
zhixingheyi_tian
大数据sparkSparkConfsparkjvmjava
/bin/spark-shell--masteryarn--deploy-modeclient/bin/spark-shell--masteryarn--deploy-modeclusterTherearetwodeploymodesthatcanbeusedtolaunchSparkapplicationsonYARN.Inclustermode,theSparkdriverrunsinside
- Apache SeaTunnel × Hive 深度集成指南:原理、配置与实践
数据库
在大数据处理的复杂生态中,数据的高效流转与整合是实现数据价值的关键。ApacheSeaTunnel作为一款高性能、分布式、易扩展的数据集成框架,能够快速实现海量数据的实时采集、转换和加载;而ApacheHive作为经典的数据仓库工具,为结构化数据的存储、查询和分析提供了坚实的基础。将ApacheSeaTunnel与Hive进行集成,能够充分发挥两者的优势,构建起高效的数据处理链路,满足企业多样化的
- 大数据平台之ranger与ldap集成,同步用户和组
无级程序员
大数据大数据hadoop
ranger可以通过ranger-usersync与linux系统同步用户,但是,还有个问题,就是我们的hiveserver一般是集群,可以是多台服务器,那么我们空间同步哪一台呢,而且如果用户多了,如何管理用户登录密码呢,所以,还是要用ldap比较合理。首先是安装openldap:yum-yinstallopenldapcompat-openldapopenldap-clientsopenldap
- vue-scrollto实现页面组件锚点定位
长路 ㅤ
前端vue.js前端javascript
文章目录前言背景操作指南安装及配置步骤vue组件中使用参考文章前言博主介绍:✌目前全网粉丝3W+,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领域。涵盖技术内容:Java后端、大数据、算法、分布式微服务、中间件、前端、运维等。博主所有博客文件目录索引:博客目录索引(持续更新)视频平台:b站-Coder长路背景vue中在hash模式下,页面的动态渲染
- SQL Server 临时表、表变量与WITH语句的用法与区别
Favor_Yang
SQL调优及高级SQL语法编写数据库sqlsqlserver
引言在SQLServer数据处理中,临时表、表变量和WITH语句(CTE)是关键的中间结果集管理工具。临时表适合大数据量操作,表变量优化小数据量场景,而CTE则简化复杂查询逻辑。三者选择需综合考量数据量级、事务需求及代码可读性。本文将深入解析其工作机制,通过实测对比指导场景化选型。1.临时表(TemporaryTables)定义与创建通过#(本地)或##(全局)前缀创建物理表:--本地临时表CRE
- 从0到1:Vue.js与D3.js搭建AI大数据动态看板
一、引言在当今AI和大数据盛行的时代,数据如同企业的“石油”,蕴含着巨大的价值。随着数据量呈指数级增长,如何从海量数据中快速提取有价值的信息,并以直观、易懂的方式呈现出来,成为了数据分析领域的关键挑战。数据看板作为一种强大的数据可视化工具,能够将复杂的数据转化为直观的图表、图形和指标,帮助用户快速理解数据背后的含义,做出更明智的决策。无论是企业的管理层、业务分析师还是数据科学家,都可以通过数据看板
- Spark RDD 及性能调优
Aurora_NeAr
sparkwpfc#
RDDProgrammingRDD核心架构与特性分区(Partitions):数据被切分为多个分区;每个分区在集群节点上独立处理;分区是并行计算的基本单位。计算函数(ComputeFunction):每个分区应用相同的转换函数;惰性执行机制。依赖关系(Dependencies)窄依赖:1个父分区→1个子分区(map、filter)。宽依赖:1个父分区→多个子分区(groupByKey、join)。
- Apache Iceberg数据湖基础
Aurora_NeAr
apache
IntroducingApacheIceberg数据湖的演进与挑战传统数据湖(Hive表格式)的缺陷:分区锁定:查询必须显式指定分区字段(如WHEREdt='2025-07-01')。无原子性:并发写入导致数据覆盖或部分可见。低效元数据:LIST操作扫描全部分区目录(云存储成本高)。Iceberg的革新目标:解耦计算引擎与存储格式(支持Spark/Flink/Trino等);提供ACID事务、模式
- YARN container cpu超核如何解决
fzip
YARN超核
在ApacheHadoopYARN中,ContainerCPU超核(即Container使用的CPU资源超过分配量)是一个常见问题,可能导致集群性能下降或不稳定。以下是解决该问题的详细步骤:1.问题诊断1.1确认超核现象查看YARNWebUI:访问http://:8088,检查Container的CPU使用率是否持续超过分配的vCore数。检查NodeManager日志:查看/var/log/ha
- Hadoop-Mapreduce入门
Hadoop-Mapreduce入门MapReduce介绍mapreduce设计MapReduce编程规范入门案例WordCountMapReduce介绍MapReduce的思想核心是“分而治之”,适用于大量复杂的任务处理场景(大规模数据处理场景)。知识。Map负责“分”,把复杂的任务分解为若干个“简单的任务”来并行处理。可以进行拆分的前提是这些小任务可以并行计算,彼此间几乎没有依赖关系。Redu
- Flink ClickHouse 连接器:实现 Flink 与 ClickHouse 无缝对接
Edingbrugh.南空
大数据flinkflinkclickhouse大数据
引言在大数据处理领域,ApacheFlink是一款强大的流处理和批处理框架,而ClickHouse则是一个高性能的列式数据库,专为在线分析处理(OLAP)场景设计。FlinkClickHouse连接器为这两者之间搭建了一座桥梁,使得用户能够在Flink中方便地与ClickHouse数据库进行交互,实现数据的读写操作。本文将详细介绍FlinkClickHouse连接器的相关内容,包括其特点、使用方法
- Hadoop MapReduce入门
且行且安~
数据分析进阶之路Linux命令hadoopMapReduce入门
入门简介计算过程分为两个阶段Map和ReduceMap阶段并行处理输入数据Reduce阶段对Map结果进行汇总针对python语言来说:map函数或者reduce函数来说,输出的数据格式为元组tuple一个简单的MapReduce程序只需要指定map()reduce()input()output()剩下的由框架完成。Linux常见命令:-读取文件(文本文件,在Windows下使用记事本打开的文件)
- Hadoop MapReduce 入门
一、Hadoop3.0.4环境准备1.环境要求Java8(Hadoop3.0.4不支持Java11+)单节点或多节点Linux系统(推荐Ubuntu18.04+)至少4GB内存(建议8GB+)50GB以上磁盘空间2.安装Java#安装Java8sudoapt-getinstallopenjdk-8-jdk#验证安装java-version3.下载与安装Hadoop3.0.4#下载Hadoop3.0
- 【前端开发】Uniapp分页器:新增输入框跳转功能
基于UniApp官方扩展组件库uni-ui中的uni-pagination分页器组件,针对大数据量场景进行优化主要优化以下内容:新增输入框跳转功能:在原有分页器基础上,新增了一个输入框区域,允许用户直接输入目标页码进行跳转双向页码绑定优化:实现了输入框与当前页码的双向绑定机制。当用户通过其他方式(如点击上一页、下一页、页码按钮)切换页面时,输入框会自动更新显示当前页码。同时,当用户在输入框中输入页
- 大数据技术之Flink
第1章Flink概述1.1Flink是什么1.2Flink特点1.3FlinkvsSparkStreaming表Flink和Streaming对比FlinkStreaming计算模型流计算微批处理时间语义事件时间、处理时间处理时间窗口多、灵活少、不灵活(窗口必须是批次的整数倍)状态有没有流式SQL有没有1.4Flink的应用场景1.5Flink分层API第2章Flink快速上手2.1创建项目在准备
- 如何在YashanDB中实现多级缓存策略
数据库
随着大数据时代的到来,数据存储和访问的效率要求越来越高。数据库技术在面对海量数据、高并发访问时,性能瓶颈逐渐凸显,尤其是响应时间和系统吞吐量成为开发者和DBA关注的重点。为了解决这些问题,缓存策略被引入作为一种有效的解决方案。然而,不同类型的缓存(如内存缓存、磁盘缓存等)之间需要协调工作,以达到最佳性能。在此背景下,YashanDB作为一个云原生数据库,支持多级缓存策略,为数据访问提供了灵活的加速
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found