hello,大家好,又是周一,新的一周,今天我们要继续学习单细胞空间方面的知识,今天分享的文献在Nongenetic Evolution Drives Lung Adenocarcinoma Spatial Heterogeneity and Progression , 运用单细胞空间(DSP)技术来表征肺腺癌基因组和转录组对于肿瘤进化的决定性作用,文章于2021年1月发表于Cancer Discovery IF40分,我们今天来看看文章的内容和方法。
Abstract
癌症进化决定了肿瘤内的分子和形态异质性,并对有效治疗的设计提出了挑战。在肺腺癌中,疾病进展和预后与形态多样的肿瘤区域的出现有关,称为组织学模式。然而,分子和组织学特征之间的联系仍然难以捉摸。在这里,研究生成了原发性肺腺癌组织学模式的多组学和空间分辨分子谱,将其与来自 2,000 多名患者的分子数据进行了整合。从惰性模式到侵略模式(indolent to aggressive patterns)的转变不是由基因改变驱动的,而是由表观遗传和转录重编程重塑癌细胞身份所驱动的。量化这种转变的特征是多个人类队列中患者预后的独立预测因子。在单个肿瘤中,高度多路复用的蛋白质空间分析显示免疫沙漠(immune desert,)、发炎和排除区域共存,这与组织学模式组成相匹配。分析的结果提供了肺腺癌瘤内空间异质性的详细分子图谱,追踪了癌症进化的非遗传途径。
Significance
肺腺癌根据组织学模式流行率进行分类。然而,单个肿瘤表现出多种具有未知分子特征的模式。表征了肿瘤内模式和预测患者预后的分子标志物的非遗传机制。肿瘤内模式决定了不同的免疫微环境,值得在当前免疫疗法的背景下进行研究。
INTRODUCTION
癌细胞通过获得新的改变和适应不断变化的条件而进化。遗传、表观遗传和转录变化决定了患者之间和个体肿瘤内的广泛异质性,影响疾病预后和治疗选择。肺腺癌是肺癌最常见的亚型,它包括分子和表型多样的疾病,与烟草暴露相关或无关。肺腺癌的遗传多样性已被记录在患者之间,它可以决定治疗选择,而在单个肿瘤中,它可以维持疾病演变和治疗抵抗。然而,肺腺癌患者间和患者内的分子多样性并不完全是遗传性的。转录和表观遗传异质性在患者之间和患者内部都有报道。此外,分子多样性可以在不同的肿瘤微环境中转化,例如与可变的肿瘤突变负荷 (TMB) 或特定致癌改变的存在相关。
在临床中,组织病理学分析揭示了称为组织学模式的异质肿瘤组织形态。最常见的模式分为贴壁型、乳头状、腺泡型和solid型(lepidic, papillary, acinar, and solid),80% 的肺腺癌同时表现出这些模式中的至少两种。根据最新的 WHO 分类,组织病理学肺腺癌分类基于模式患病率,这是一个主要的预后指标。事实上,具有普遍lepidic模式的肿瘤通常被认为侵袭性较低,并且与疾病的早期阶段相关,而solid肿瘤则表明预后不良。这些预后关联定义了从lepidic到乳头状、腺泡状,最后是实性的模式的潜在进展。
然而,是否也可以在分子水平上观察到这种进展尚不清楚。事实上,在同一肿瘤材料中分析这些特征的困难阻碍了协调分子和组织学异质性。最近的数字病理学和空间基因组学技术与先进的计算方法相结合,提供了应对这一挑战的新策略。例如,多区域分子图谱和组织学数据的组合最近被用来在肺腺癌突变异质性和微环境组成之间建立联系,这对在这种疾病中采用当前的免疫疗法具有相关意义。然而,尽管它们具有预后相关性,但缺少同一患者形态不同区域的综合分子谱。事实上,肺腺癌组织学模式的分子特征及其肿瘤微环境的形成在很大程度上是未知的。
在这里,对原发性人肺腺癌进行了组织病理学指导的多区域取样,以解剖与独特组织学模式相对应的肿瘤区域。这些区域的多组学和空间解析的分子谱能够定义决定肺腺癌模式进展的肿瘤内在和肿瘤外在过程。在来自独立患者队列的 2,000 多个肺腺癌样本中验证并评估了结果的预后意义。重要的是,这些过程都不能追溯到特定的遗传变异,而是表观遗传和转录重编程。总体而言,研究确定了支持非遗传进化的致癌过程和空间特征,作为肺腺癌异质性和进展的驱动因素。
RESULTS
Molecular Interpatient Heterogeneity of Histologic Patterns
首先检查了来自癌症基因组图谱 (TCGA) 队列的 206 个肺腺癌样本的分子特征,这些样本已根据最普遍的模式进行了注释:lepidic性 (n = 8)、乳头状 (n = 47)、腺泡状 ( n = 86)和solid(n = 65;补充表 S1)。具有相同最普遍模式的样本具有相似的肿瘤分期表现,但solid流行的肿瘤表现出显着更高的 TMB(下图)
- 注:Total number of somatic coding mutations (y-axis) in TCGA samples (colored points) stratified by histologic pattern classification (x-axis). The outlier lepidic-annotated TCGA sample is highlighted by its patient ID. P values are computed by Wilcoxon two-tailed test.
与最近在独立队列中的观察结果以及编码基因的拷贝数改变数量一致。这一趋势的一个显着例外是lepidic注释的肿瘤样本 (TCGA-44-7670)。然而,在审查了为该数据集提供的虚拟载玻片后,发现提交分子谱分析 (01A-TS1) 的肿瘤区域和提交病理学审查的肿瘤区域 (01Z-DX) 的组织学模式非常不同,这表明肿瘤内异质性可能解释这种不一致(下图)。
- 注:Representative H&E images of two tumor tissue slides for the TCGA-44-7670 sample: an image taken from a slide corresponding to the tumor sample used for histopathology review (left) and an image corresponding to the tumor sample used for molecular analyses (right).
预测的新抗原与 TMB 成比例增加,可能预测组织学模式中的不同免疫原性。没有发现以特定模式富集的复发性遗传病变(突变、拷贝数改变或基因融合),除了主要发生在lepidic samples中的少数 PIK3CA 突变(8 名患者中的 3 名,调整 P = 0.0004)和趋势对于solid样本中更高比例的 TP53 突变(调整 P = 0.096)。solid肿瘤与高 TMB 和 TP53 突变之间的关联在东亚血统 (EAS) 肺腺癌患者的独立数据集和最近分析的临床队列中得到证实。相反,在这些队列中没有发现 PIK3CA 突变的关联。测试候选弱驱动因素或收敛在同一路径上的改变的额外分析没有返回可以跨数据集确认的重大hits。总体而言,结果表明组织学模式与肺腺癌遗传特征之间的关联有限。
相比之下,具有不同普遍模式的 TCGA 样本表现出高度多样化的转录和表观遗传谱,差异表达的基因或甲基化探针至少比偶然预期的多 2 倍
- 注:D and E, Number of (D) significantly differentially expressed genes and (E) significantly differentially methylated probes identified based on different FDR thresholds (x-axis) by comparing patients grouped by the real prevalent histologic pattern (black) or after randomizing the histologic pattern labels (gray). Error bars correspond to one standard deviation upon 100 label permutations.
有趣的是,四种组织学亚型中差异最大的基因(n = 1,337,调整 P < 0.001)和甲基化 DNA 基因座(n = 1,753,调整 P < 0.001)并未突出每组独有的特征,rather progressive changes from lepidic- to solid-prevalent samples。为了量化这种趋势,计算了每对组织学亚型之间的基因表达和 DNA 甲基化倍数变化,always comparing a more aggressive to a less aggressive subtype。这样,从lepidic到乳头状、腺泡状和solid病例的渐进性变化将导致所有倍数变化具有相同的迹象:表达/甲基化增加均为阳性,或表达/甲基化随着模式进展减少均为阴性(例如,参见最高差异表达基因 RAP1GAP 和 ANLN)
- 注:mRNA expression of two top differentially expressed genes (y-axis) in TCGA samples stratified by prevalent pattern (x-axis). Colored dots on the right indicate the median expression value of each group and arrows represent the direction of the fold change (FC): upward (downward) arrows indicate that the more aggressive patterns have lower (higher) median expression than the less aggressive patterns. Pairwise FCs always compare the more aggressive to the less aggressive pattern; hence, upward arrows correspond to negative FCs and downward arrows to positive FCs
事实上,在大多数情况下观察到一致的阳性或阴性基因表达(下图,顶部)或 DNA 甲基化(下图,底部)倍数变化,表明组织学模式不代表四种独立的分子表型,而是由表观遗传和转录重编程驱动的从lepidic to solid的转变。
- 注:Pie chart distributions of the sign of pairwise FCs computed for all differentially expressed genes (top) and differentially methylated probes (bottom)
差异表达的基因和甲基化基因启动子富集了相似的功能类别。事实上,与solid samples相比,在lepidic samples中过度表达的基因在细胞分化、发育和形态发生方面得到了富集,而与lepidic病例相比,在solid samples中过度表达的基因在细胞增殖和免疫浸润标志物方面高度富集。
- 注:Significantly enriched gene sets among genes overexpressed in lepidic-prevalent samples (blue bars) and in solid-prevalent samples (red and yellow bars).
在 EAS 数据集和另一个肺腺癌队列中证实了转录差异。同样,随着模式进展增加 DNA 甲基化的启动子探针富含参与细胞分化和形态发生的基因,而随着模式进展失去甲基化的探针富含免疫细胞标记,进一步表明侵袭性模式与肿瘤微环境的变化有关。
- 注:Significantly enriched gene sets among promoter probes with lower DNA methylation in lepidic-prevalent samples than solid-prevalent samples (blue bars) or with lower DNA methylation in solid-prevalent samples than in lepidic-prevalent samples (yellow bars).
为了证实这一发现,从转录数据中估计了不同非肿瘤细胞群的存在。Lepidic细胞样本富含肺泡和上皮标志物,支持Lepidic细胞癌细胞和正常肺组织之间的相似细胞同一性,而淋巴和骨髓免疫细胞类型总是在acinar- and solid-prevalent样本中富集,both the TCGA and EAS cohorts。
- 注:Mean mRNA expression scores for multiple cell types (rows) within each pattern subtype (columns). Values are normalized by rows (Z-scores) to show relative differences among patterns.
总体而言,这些结果表明肺腺癌模式进展与肿瘤细胞及其微环境的渐进性重编程有关。然而,迄今为止分析的分子谱是从由主要模式注释的单个肿瘤样本生成的。因此,尚不清楚在单个肿瘤中是否可以观察到类似的特征和可塑性。
Molecular Intratumor Heterogeneity of Histologic Patterns
为了确定单个肿瘤内组织学模式进展的分子特征,选择了 10 个早期肺腺癌原发患者样本的队列,每个样本至少表现出两种不同的模式,并进行了组织病理学指导的多区域采样。对于每位患者,从福尔马林固定石蜡包埋 (FFPE) 组织切片中审查并解剖肿瘤区域,以便每个区域由独特的模式组成
总共收集了 29 个肿瘤区域和 10 个正常组织样本。这些样本经全外显子组测序、RNA测序 (RNA-seq) 和 DNA 甲基化 EPIC 阵列。肺腺癌驱动突变主要是克隆性的,即在所有区域都观察到,并且与特定模式无关
- 注:Occurrence of recurrent lung adenocarcinoma genetic mutations in molecularly profiled regions. Regions from the same patient are grouped together; patients are numbered (top) and histologic patterns are color coded (annotation bar).
In most cases, we confirmed a trend for higher TMB in more advanced patterns.在考虑到患者的特定特征后,差异表达的基因和甲基化探针将样本聚集在一起,注释为相同的模式。
- 注:Heat map representation of differentially expressed genes among lung adenocarcinoma histologic patterns (rows, adjusted P < 0.001). Samples (columns) are identified by patient number followed by a letter corresponding to individual tumor regions. Histologic patterns are color coded. Cellular processes associated with significantly enriched gene sets are annotated on the right.
数据队列中模式之间的转录差异与 TCGA 和 EAS 队列中观察到的一致。事实上,lepidic样品中过度表达的基因富集了组织发育和形态发生,而solid samples但尤其是acinar samples表现出免疫浸润标记物的过度表达,尤其是 B 细胞(橙色cluster)。solid samples中过度表达的基因更具体地富集了细胞增殖标记和基质金属肽酶 (MMP) 基因(红色cluster)的过度表达。尽管发挥相反的功能,但lepidic和solid相关基因都富含细胞外基质 (ECM) 成分和调节剂。事实上,在solid samples中上调的 ECM 基因主要富含 ECM 降解(例如 MMP 基因)和胶原蛋白(例如 COL1A1 和 COL1A2),已知其激活会改变细胞粘附和促进侵袭。反之亦然,在lepidic样品中过度表达的 ECM 基因包括几种介导细胞粘附的蛋白质(例如 TNXB、FBLN5 和 MFAP4)和推定的肿瘤抑制因子(例如 DLC1;和 FOXF1)。重要的是,这些基因的表达与个体肿瘤内的模式进展相关。
- 注:mRNA expression differences among histologic patterns for a selected panel of ECM components and/or regulators (overexpressed in solid regions at the top, overexpressed in lepidic regions at the bottom). Expression values within each patient were normalized to the mean of the corresponding lepidic regions. Samples corresponding to same patient are connected by a dashed line and color coded based on concordance between intratumor differences and pattern progression.
同样,根据基因表达预测的免疫浸润在 10 名患者中的 8 名中从lepidic增加到solid模式,并且肿瘤内模式显示正常肺组织标记物(enriched in lepidic)和免疫细胞标记物(enriched in acinar and solid)的不同富集。
- 注:Immune score predicted within each tumor region for each patient
Cancer Cell Plasticity Underlies Pattern Progression
为了探索模式进展的肿瘤内在特征,独立于免疫浸润的程度,分析了三个肺腺癌样本的单细胞 RNA-seq 数据。肿瘤细胞和非肿瘤细胞之间的差异表达分析能够提取 2,410 个仅在肿瘤细胞中高度表达的基因(癌症特异性基因)。
- 注:Schematic representation of single-cell RNA-seq analysis of three tumor samples from three patients. For each sample, differential expression analysis between tumor (red) and nontumor (gray) cells led to identification of 2,410 genes preferentially expressed in cancer cells.
首先,选择了在数据队列中lepidic and solid tumor regions之间显着差异表达的癌症特异性基因(adj P < 0.1 和absolute fold change > 2)以确定lepidic (n = 36)和solid(n = 21)癌症细胞标志物。这些基因证实了细胞增殖(solid)和分化(lepidic)terms的富集
- 注:Volcano plot showing mRNA expression fold changes of cancer-specific genes between lepidic and solid tumor regions (log2–y-axis) and corresponding P values (−log10–x-axis). Significant genes are color coded (red, overexpressed in solid regions; blue, overexpressed in lepidic regions).
- 注:Significantly enriched gene sets among genes overexpressed in lepidic regions (blue bars) and in solid regions (red bars)
接下来,使用这些基因作为lepidic and solid patterns的癌细胞标记物,为每个单个癌细胞推导出转录评分,以量化它们的lepidic 或solid转录状态。这些患者样本的单细胞转录评分显示出与塑性重编程一致的状态转变:来自样本 S1 的细胞主要表现出lepidic特征,样本 S2 反而包含失去lepidic标记并表现出可变表达的solid标记的肿瘤细胞,最后是样本 S3包含跨越从lepidic到solid的整个过渡的细胞。
- 注:Scatterplot of single tumor cells from three patients scored by lepidic-like single-cell signature (y-axis) and solid-like single-cell signature (x-axis). Single cells are color coded by combined signature scores (main scatter plot) and separately shown for each patient sample (top right insets).
为了探索这些转录变化的起源,通过算法预测了哪些主转录调节因子 (TR) 最有可能调节lepidic samples和solid samples之间差异表达的基因。TCGA 和数据队列中的结果非常一致,并在solid主 TRs 中确定了细胞周期调节因子,如 E2F 转录因子、微染色体维持 (MCM) 复合成分,其调节 DNA 复制和延伸,以及Forkhead Box M1 (FOXM1) 转录因子,它是细胞增殖的关键调节因子,在多种癌症类型中过表达
- 注:TR activity scores obtained with the VIPER algorithm upon comparing lepidic and solid-annotated regions in the CHUV (x-axis) and TCGA (y-axis) cohorts. Significant TRs are color coded (red, solid associated; blue, lepidic associated) and the top scoring are labeled
在lepidic master TRs中,发现了与肿瘤抑制功能相关的基因,例如降解MYC癌基因的昼夜节律抑制因子CRY2和锌指转录因子ZBTB4,以及参与细胞分化和发育的转录因子,如CASZ1 ,和 YAP 阻遏物 WWC1。在 TCGA 和数据队列中,lepidic主 TR 和lepidic癌细胞标记物在solid samples中平均表现出更高的启动子 DNA 甲基化,这表明lepidic TR 和标记的下调至少部分是由表观遗传沉默驱动的。有趣的是,来自高通量 CRISPR 敲除筛选的数据显示,在肺腺癌细胞系中,solid模式中富含的 TR 的丢失在很大程度上是有害的,并且由于它们对细胞增殖的作用,许多(尽管不是全部)被归类为必需基因。相反,在相同的细胞中,敲除富含lepidic模式的 TR 对细胞活力产生适度影响,有时甚至改善细胞适应性,与推定的肿瘤抑制功能一致。
- 注:Gene dependency scores obtained from the AVANA CRISPR screening data set. Negative (positive) values indicate fitness decrease (increase) upon gene knockout. Values for lepidic (blue) and solid (red) TRs are the mean obtained upon gene KO in lung adenocarcinoma cell lines
接下来,结合了癌症特异性lepidic和solid标记物以生成独特的 mRNA 特征并量化lepidic-solid转变(L2S 特征)。TCGA 和 CHUV 样本中的 L2S 特征评分与患者和肿瘤内分类和模式进展一致,事实上,正常肺组织的评分最低,lepidic样、乳头状、腺泡状,最后是solid样本,平均得分最高。有趣的是,L2S 分数正确预测了错误注释的 TCGA 样本 (TCGA-44-7670) 的模式,并且与基于主要模式的分类不同,它将 TCGA 样本分为具有显着不同预后的类别。
- 注:Overall survival difference (Kaplan–Meier curve) between TCGA samples within the top (red) and bottom (blue) quartiles of L2S scores. P value was computed by log-rank test.
这一特征有可能在更大的肺腺癌肿瘤中估计模式进展并评估其预后价值,其中转录谱可用,但组织病理学注释不可用。总的来说,对来自 10 个患者队列的 2,000 多个肺腺癌人类样本进行了分析和评分。多变量 Cox 回归证实,除了一个测试队列(即包含 100 多名患者的队列)外,所有肿瘤分期和 L2S 评分都是正交和独立的预后因素。
- 注:Hazard ratios associated with increasing values of the L2S signature score (10% increase) in seven independent lung adenocarcinoma data sets comprising >100 patients each (# column). P values were computed by multivariate Cox regression. The size of the dots is proportional to the number of sample. 95% confidence intervals are reported as horizontal lines.
此外,在所有队列中,L2S 评分与lepidic和solid TR 的预测活动以及微环境组成密切相关
- 注:Correlation values between gene set mRNA expression scores for multiple cell types and L2S scores in 10 independent data sets.
有趣的是,L2S 评分与免疫细胞标志物之间的最高相关性是 T 细胞耗竭标志物,这表明免疫逃避机制发生在具有solid模式特征的肿瘤样本中。
The Tumor Microenvironment of Lung Adenocarcinoma Histologic Patterns
L2S 特征与跨独立肺腺癌患者队列的免疫浸润之间的可重复关联促使研究不同模式对应的肿瘤免疫微环境的空间组成。首先,通过多色免疫荧光分析了来自患者队列和另外三名具有实心图案的患者的 FFPE 肿瘤组织切片,以检测增殖细胞 (Ki-67+)、B 细胞 (CD20+)、CD4+ 和 CD8+ T 细胞以及巨噬细胞 (CD68+)。分别通过苏木精和伊红 (H&E) 染色和 TTF1 染色来区分肺腺癌模式和肿瘤细胞,并通过设计一种空间网格量化方法 (GridQuant) 来量化荧光信号强度,该方法对可变大小像素内的荧光信号进行平均
- 注:Spatial immune profiles of lung adenocarcinoma histologic patterns. A and B, H&E (A) and TTF1 (B) staining of lung adenocarcinoma tissue sample (patient 1). Lepidic (blue) and acinar (orange) patterns are contoured. C, Multicolor immunofluorescence staining for an lung adenocarcinoma tissue sample (patient 1). Images show separately fluorescence staining for Ki-67 (top left), CD8 (top right), CD20 (bottom left), and CD4 (bottom right). D, Schematic representation of GridQuant: each image is binned into a grid with bins/pixels of variable sizes. In this study, we tested pixel sizes varying from 10 to 500 mm (left). Fluorescence intensity is then averaged for each bin. An example for CD8 fluorescence is shown (right).E, Box plot distribution of cell densities (number of cells per mm2, N/mm2) for cells that were positive for each of the tested antibodies (x-axis). For each antibody, cell density values are computed for each pixel, and values obtained for pixel from regions with a different histologic pattern are compared. Pixel size = 200 μm.
这些分析揭示了肺腺癌模式中免疫细胞浸润的程度和geographic组织的显着差异。solid区域表现出比其他模式明显更强的 Ki-67 强度,而免疫细胞标记随着模式进展而增加强度,但在acinar区域最高。有趣的是,在几个肿瘤中,观察到三级淋巴结构的形成,有时以resembling germinal centers的增殖 B 细胞的 Ki-67 阳性核心为特征。 TLS 的形成与改善预后和对免疫疗法的反应有关;因此,在样本中评估了它们在模式中的分布。自动识别了载玻片中的所有 TLS,发现这些在正常肺组织和lepidic癌区域中不存在,但在acinar区域中普遍观察到,在乳头状和solid区域中观察到的频率较低。总之,这些结果表明免疫浸润随着模式进展而增加,但在acinar中最大,而不是在solid模式中。
- 注:F, Multicolor IF staining of TLS. **G, **Quantification of TLS density across different regions corresponding to a unique histologic pattern (colored points).
接下来,通过评估肿瘤和非肿瘤细胞的共定位来研究不同模式下肿瘤微环境的空间组织。 TTF1+ 和 TTF1- 信号在正常肺和lepidic区域呈正相关,可能是由于存在细胞耗竭的肺泡结构,在乳头和腺泡区域缺乏相关性,但在solid区域高度反相关,与癌症的低混合性一致和非癌细胞。同样,免疫细胞标记物和 Ki-67 的共定位(此处可用于标记肿瘤细胞)在与像素大小无关的solid区域中最低。与这些趋势一致,注意到淋巴细胞和巨噬细胞位于单个肿瘤载玻片内的solid区域的边界处。为了量化这些观察结果,使用 GridQuant 提取从每个solid肿瘤区域的外围到其核心的不同距离处的平均信号强度。在所有情况下,外围的免疫细胞密度高于肿瘤区域的核心,表明solid模式中免疫细胞的空间分布与immune-excluded表型一致。
- 注:H, Correlation between the number of TTF1+ and TTF1− cells within each pixel of a given region corresponding to a unique histologic pattern (colored points). Pixel size = 200 μm. I, H&E (left) and multicolor IF (center) staining of lung adenocarcinoma tissue sample (patient 8) and zoom-in of the IF staining of the solid pattern (right). Histologic patterns are contoured and color coded. J, Schematic representation of spatial quantification based on distance from the tumor boundary (red line). Contoured regions define discrete subsets of pixels within a certain interval of distances from the tumor boundary. K, Spatial quantification based on distance from the tumor boundary for the solid region of patient 8 (8B). Signal intensities were averaged among pixels within a certain interval of distances from the tumor boundary (gray line) and at the tumor core, defined as >1 mm inside the boundary. Pixel size = 100 μm. **L, **Spatial quantification based on distance from the tumor boundary for all solid regions. Pixel size = 100 μm.
为了证实这一证据并更详细地探索肺腺癌核心和外围的分子谱和免疫微环境,对来自五名患者的五张组织切片进行了数字空间分析(DSP;NanoString GeoMX)。简而言之,在每张幻灯片中,选择并分析了一组 58 种抗体,包括 12 个感兴趣区域(ROI;总共 n = 60),位于不同组织学模式的核心或外围。ROI 定位与免疫浸润无关,通过 CD45 阳性细胞的比率或蛋白质表达来衡量,solid ROI 除外。
- 注:Digital spatial profiling of lung adenocarcinoma histologic patterns. A, Immuno-score of all tumor ROIs for five patients defined as fraction of CD45-positive cells by immunofluorescence analysis (top barplot; bars are color coded based on the pattern of the corresponding region). ROIs are annotated by tumor core or periphery localization (black and white circles, respectively) and by DSP protein expression of the top correlated protein with CD45+ immuno-score (bottom heat map). DSP values are normalized by SNR and by z-score for each patient
实际上,在来自患者 8 的六个solid ROI 中,两个位于肿瘤核心(R9 和 R8)并且免疫浸润水平最低,四个位于肿瘤外围(R6、R7、R10、R12) 并且都表现出高免疫浸润
- 注:Top, H&E staining of lung adenocarcinoma tissue sample (patient 8). Bottom, schematic diagram of patient 8 normal tissue regions and tumor histologic patterns (color coded) and selected tumor ROIs analyzed by DSP.
solid ROI 表达高水平的癌细胞特异性标志物(PanCK 和 EPCAM)、Ki-67 和白细胞介素 7 受体(IL7R 或 CD127)。尽管 IL7R 可由肿瘤细胞和免疫细胞表达,但这些 ROI 中免疫细胞的低含量表明 IL7R 在这里由癌细胞表达。重要的是,IL7R 的癌细胞表达与非小细胞肺癌的不良预后相关。相反,外周 ROI 表现出免疫细胞标志物的高表达,包括免疫抑制调节性 T 细胞 (Treg) 标志物 TIM3 和免疫检查点 VISTA。
- 注:Differentially expressed proteins between ROIs at the core of the solid region (R8 and R9) and at the periphery of the solid region (R6, R7, R10, and R12). Values are normalized by SNR and by z-score for each patient
solid瘤区域核心和外围的免疫浸润程度差异很大,这对比较癌细胞或免疫细胞特异性特征的可能性提出了挑战。为了克服这一挑战,分析了来自三个solid瘤区域的 36 个额外 ROI,并且在每个 ROI 中,分别分析了免疫细胞 (CD45+) 和癌细胞 (PanCK+)。通过选择性保留来自一个或另一个细胞群的信号,首先比较了solid瘤区域核心和外围的癌细胞。在这里,发现外围的癌细胞实际上表现出比癌细胞显着更高水平的增殖标志物 Ki-67在肿瘤的核心,与浸润边缘一致,以及 Pan-AKT 和 p53。接下来,虽然solid ROI 核心的免疫浸润较低,但核心和外围 CD45+ 细胞的特异性比较表明免疫细胞浸润在solid区域核心的免疫抑制效应 Treg 标记物(如 FOXP3、CD25 和 TIM3)和免疫检查点(如 CTLA4、VISTA 和 ICOS)显着富集。虽然所有solid瘤都表现出免疫排斥的特征,但残留的免疫浸润与免疫抑制微环境一致,尤其是与效应 Treg 的存在相关。
- 注:**D, **Schematic representation of DSP analysis with ROI masks: ROIs at the core or periphery of the tumor (left) were first analyzed by IF for PanCK (green), CD3 (light blue), DNA (dark blue), and CD45 (red); next, CD45 and PanCK fluorescence was used to build two masks (white, selected; black, unselected) to selectively analyze either PanCK+ cells or CD45+ cells. E and F, Differentially expressed proteins between core (black circles) and periphery (white circle) ROIs exclusively comprising **(E) **PanCK+ cells or **(F) **CD45+ cells from solid tumor region of three patients (patient of origin is annotated on the left). Values are normalized by SNR and by z-score for each patient.
DISCUSSION
患者之间和患者内部的癌症异质性在分子和组织学水平上都很明显。然而,基因组特征如何以及是否决定细胞形态和空间组织在很大程度上是未知的。在这里,通过引入一种基于组织病理学指导的多区域采样的方法来协调肺腺癌的分子和组织学异质性。结果显示了肿瘤进化的非遗传机制是组织学异质性和疾病进展的决定因素的证据。事实上,从lepidic组织到solid组织学的进展与分化细胞标志物的塑性重编程、细胞增殖增加以及从免疫沙漠(lepidic)到发炎(乳头状,尤其是腺泡)并最终排除和抑制(solid)微环境的转变有关。重要的是,癌细胞-内在特征和微环境组成的转变在个体肿瘤和匹配的肿瘤内模式异质性中是明显的。
癌细胞的可塑性重编程和微环境变化的伴随证据提出了对此类变化起源的疑问。肿瘤细胞去分化是否会激活特定的免疫形成和反应?或者肿瘤免疫微环境的动态变化是否触发了癌细胞的可塑性?为了解决这些问题,需要模拟人类疾病的转录、表观遗传和形态学特征的肺腺癌模型。非小细胞肺癌的小鼠模型概括了在人类疾病中观察到的一些组织学模式,但这些模式的分子特征仍有待研究。有趣的是,最近的证据表明,基因工程小鼠模型 (GEMM) 中的肺腺癌进展伴随着塑料重编程驱动细胞去分化。在人类队列中观察到的细胞状态转变与肺腺癌 GEMM 中的细胞状态转变的详细比较对于研究遗传和治疗操纵特定 TRs 驱动肺腺癌进展的可能性非常重要。此外,在新抗原呈递、细胞因子产生和 PD-L1 表达的表观遗传调控的背景下,已经观察到肿瘤微环境与癌细胞表观遗传特征变化之间的相互影响。然而,确定癌细胞重编程和免疫监视之间的相对时间和因果相互作用具有挑战性。为了实现这一目标,来自原始患者样本的肿瘤分子谱的详细单细胞空间特征或肿瘤空间特征的纵向分析可以为实验模型中的功能分析提供信息和补充。
有趣的是,即使通过选择以独特模式为特征的肿瘤内区域,也没有找到将四种模式区分为单独和独立类别的标记的证据。相反,结果表明在两个极端状态(lepidic and solid)之间发生转变,乳头状和腺泡状可能是中间状态。为了量化这种转变,提出了一种源自纯lepidic和纯solid肿瘤区域比较的转录特征(称为 L2S 特征)。重要的是,L2S 评分是多个独立肺腺癌队列中患者总生存期和免疫浸润的独立预测因子,并突出了由于肿瘤内异质性导致的样本错误注释。随着分子分析技术在诊断中的应用不断扩大,发现的特征可以为组织病理学提供补充。特别是,早期肺腺癌普遍存在肿瘤内模式异质性。随着最近的成功以及可能更多地采用筛查来检测疾病,预计早期诊断出的病例会增加。区分那些在治疗、手术和/或放疗后更有可能进展或复发的患者,并更好地选择需要辅助治疗的患者和治疗类型至关重要。
在晚期/转移性腺癌中,免疫疗法作为单一药物或与其他药物联合治疗现在是重要部分病例的治疗选择。此外,新辅助治疗中的免疫检查点抑制剂 (ICI) 目前对非小细胞肺癌非常感兴趣,如 PD-1 抑制剂纳武单抗的最新结果所示,这导致 45% 的患者出现主要病理反应。患者 (64)。其他早期肿瘤的临床试验正在进行中,预计今年会有结果。随着新数据的出现,在辅助和新辅助设置中测试肺腺癌组织学模式组成或特征与对 ICI 的反应之间的关联将是有价值的。
随着疾病进展出现组织学异质性并不是肺腺癌独有的特征。已经在多种肿瘤类型中报道了形态学变化的证据,例如乳腺癌和肝细胞癌。在这些肿瘤类型中,将组织病理学指导的多区域采样与分子图谱相结合可能被证明是研究疾病演变的有效策略。特别是,最近开发的空间基因组学技术需要与能够利用空间信息的计算方法相结合,以提供关于肿瘤和非肿瘤细胞之间相互作用以及这种相互作用如何塑造癌细胞身份的新见解。总的来说,协调分子和表型异质性是理解和整合癌症进化的遗传和非遗传机制的关键第一步。
METHODS
Digital Spatial Profiling
Two runs of highly multiplexed and spatially resolved proteomic profiling of tumor and immune cells were performed with the GeoMx Digital Spatial Profiler (NanoString) as previously described on five (batch1) and three (batch2) FFPE tissue sections. In batch1, immunofluorescence assays were performed using antibodies against CD3, CD20, CD45, and DAPI, and the multicolor images were used to guide the selection of 12 ROIs for each slide; for each ROI, digital counts from barcodes corresponding to protein probes (52 immune and tumor-related proteins) were obtained using nCounter (NanoString). In each ROI, automated cell detection was performed on the immunofluorescence images to count nucleated cells (DAPI-positive) and, among them, CD45-positive cells. Immune ratio was computed as the ratio between the number of CD45-positive cells and DAPI-positive cells. In batch2, Pan-cytokeratin (PanCK), CD45, CD3, and DAPI antibodies were used; from each ROI, two areas of interest (AOI) were extracted with image segmentation, one containing pixels positive for PanCK (tumor compartment) and one for CD45 (immune compartment); digital counts were then obtained for each AOI separately (73 immune and tumor-related proteins; Supplementary Table S9); in PanCK-positive and CD45-positive AOIs, only tumor-related and immune-related proteins, respectively, were tested in downstream analyses. Levels of three housekeeping proteins (GAPDH, histone H3, and S6) and three negative controls (Ms IgG1, Ms IgG2a, and Rb IgG) were also measured. Digital counts for each protein were normalized with internal spike-in controls (ERCC) and signal-to-noise ratio (SNR), i.e., the ratio between the ERCC normalized counts of the protein and the geometric mean of the negative controls assayed in the ROI/AOI considered. In all downstream analyses, only proteins having SNR>2 in at least three ROIs/AOIs were tested. ROIs/AOIs were annotated according to their histologic pattern and location with respect to the pattern boundary (center/core or periphery) using adjacent H&E-stained tissue sections. Some ROIs were also taken from TLS but were not used for the analyses presented in this study. Differences between locations in solid pattern regions were tested with t test (batch1, one solid pattern region and six ROIs) and with two-way ANOVA controlling for sample and testing separately AOIs from immune and tumor compartments (batch2, three samples with one solid pattern region in each of them, 26 total AOIs for each tissue compartment).
生活很好,有你更好