- 【机器学习】朴素贝叶斯
可口的冰可乐
机器学习机器学习概率论
3.朴素贝叶斯素贝叶斯算法(NaiveBayes)是一种基于贝叶斯定理的简单而有效的分类算法。其“朴素”之处在于假设各特征之间相互独立,即在给定类别的条件下,各个特征是独立的。尽管这一假设在实际中不一定成立,合理的平滑技术和数据预处理仍能使其在许多任务中表现良好。优点:速度快:由于朴素贝叶斯仅需计算简单的概率,训练和预测的速度非常快。适用于高维数据:即使在特征数量多的情况下,朴素贝叶斯仍然表现良好
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- 人工智能与机器学习原理精解【17】
叶绿先锋
基础数学与应用数学人工智能机器学习概率论
文章目录贝叶斯贝叶斯定理的公式推导一、条件概率的定义二、联合概率的分解三、贝叶斯定理的推导四、全概率公式的应用五、总结全概率公式推导一、全概率公式的定义二、全概率公式的推导三、全概率公式的应用贝叶斯定理的原理一、基本原理二、核心概念三、数学表达式四、原理应用五、原理特点朴素贝叶斯定理一、贝叶斯定理基础二、朴素贝叶斯的原理三、朴素贝叶斯的特点朴素贝叶斯公式一、贝叶斯定理二、特征独立性假设三、朴素贝叶
- python机器学习算法--贝叶斯算法
在下小天n
机器学习python机器学习算法
1.贝叶斯定理在20世纪60年代初就引入到文字信息检索中,仍然是文字分类的一种热门(基准)方法。文字分类是以词频为特征判断文件所属类型或其他(如垃圾邮件、合法性、新闻分类等)的问题。原理牵涉到概率论的问题,不在详细说明。sklearn.naive_bayes.GaussianNB(priors=None,var_smoothing=1e-09)#Bayes函数·priors:矩阵,shape=[n
- python奇数平方和_平方和
weixin_39807352
python奇数平方和
平方和误差和最大后验2020-12-2119:32:19多项式曲线拟合问题中的最大后验与最小化正则和平方和误差之间的关系简单证明多项式回归的最大后验等价于最小正则化和平方和误差;主要内容:多项式回归高斯分布贝叶斯定理对数函数计算1.简单回顾一下多项式回归y组合模型方法2020-12-0813:01:57不同的定性预测模型方法或定量预测模型方法各有其优点和缺点,它们之间并不是相互排斥的,而是相互联系
- 深度学习速通系列:贝叶思&SVM
Ven%
支持向量机人工智能深度学习算法机器学习
贝叶斯(Bayesian)方法和支持向量机(SVM,SupportVectorMachine)是两种不同的机器学习算法,它们在解决分类和回归问题时有着不同的原理和应用场景贝叶斯方法:贝叶斯方法基于贝叶斯定理,这是一种利用已知信息(先验概率)来预测未知事件(后验概率)的概率方法。它通常用于分类问题,特别是当数据集较小或存在类别不平衡时。贝叶斯方法可以处理不确定性,并且可以通过增加新的数据来更新先验概
- 亦菲喊你来学机器学习(14) --贝叶斯算法
方世恩
机器学习算法人工智能pythonscikit-learn
文章目录贝叶斯一、贝叶斯定理二、贝叶斯算法的核心概念三、贝叶斯算法的优点与局限优点:局限:四、构建模型训练模型测试模型总结贝叶斯贝叶斯算法(Bayesianalgorithm)是一种基于贝叶斯定理的机器学习方法,主要用于估计模型参数和进行概率推断。以下是对贝叶斯算法的详细解析:一、贝叶斯定理贝叶斯定理是概率论中的一个基本定理,它描述了条件概率之间的关系。该定理的数学表达式为:P(A∣B)=P(B)
- 【深度学习】S2 数学基础 P6 概率论
脚踏实地的大梦想家
#深度学习深度学习概率论
目录基本概率论概率论公理随机变量多个随机变量联合概率条件概率贝叶斯定理求和法则独立性期望与方差小结基本概率论机器学习本质上,就是做出预测。而概率论提供了一种量化和表达不确定性水平的方法,可以帮助我们量化对某个结果的确定性程度。在一个简单的图像分类任务中;如果我们非常确定图像中的对象是一只猫,那么我们可以说标签为“猫”的概率是1,即P(y=“猫”)=1P(y=“猫”)=1P(y=“猫”)=1;如果我
- 【机器学习笔记】4 朴素贝叶斯
RIKI_1
机器学习机器学习笔记人工智能
贝叶斯方法贝叶斯分类贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。朴素贝叶斯分类是这一类算法中最简单的较为常见的算法。先验概率根据以往经验和分析得到的概率。我们用()来代表在没有训练数据前假设拥有的初始概率。后验概率根据已经发生的事件来分析得到的概率。以(|)代表假设成立的情下观察到数据的概率,因为它反映了在看到训练数据后成立的置信度。联合概率是指在多元的概率分
- 朴素贝叶斯算法
YuanDaima2048
机器学习算法学习算法机器学习人工智能深度学习pythonsklearn
朴素贝叶斯算法一、基本概念二、算法及代码应用朴素贝叶斯NB算法分类算法区别其他机器学习算法:机器学习实战工具安装和使用一、基本概念朴素贝叶斯(NB)是一种基于贝叶斯定理与特征条件独立假设的分类算法。它被广泛应用于文本分类、垃圾邮件过滤等领域。朴素贝叶斯算法简单易懂,其核心思想是假设在给定目标值时,各个属性之间相互独立。在实际应用中,朴素贝叶斯算法在垃圾邮件过滤中表现出色。它不仅准确率高,而且速度快
- 8、python多项式贝叶斯文本分类(完整)
UP Lee
数据挖掘实战多项式贝叶斯文章分类
1、贝叶斯定理(BayesTheorem)朴素贝叶斯分类(NaiveBayesClassifier)贝叶斯分类算法,是统计学的一种分类方法,它是利用贝叶斯定理的概率统计知识,对离散型的数据进行分类的算法2、贝叶斯算法的类型sklearn包naive_bayes模块GaussianNB高斯贝叶斯BernoulliNB伯努利贝叶斯MultionmialNB多项式贝叶斯(需要知道具体每个特征的数值大小)
- UVA11181条件概率 Probability|Given
DBWG
洛谷算法概率论
条件概率Probability|Given-洛谷|计算机科学教育新生态(luogu.com.cn)样例解释:需要学习条件概率和贝叶斯定理//12-0.1*0.2*(1-0.3)==0.014//1-30.1*0.8*0.3==0.024//-230.9*0.2*0.3==0.054//0.092//(0.014+0.024)/0.092==0.413043包含1的概率除以所有情况的概率之和就是1买
- 和米老师思维碰撞
eSoo
最近和米老师的交流,发现自己在学习方法上,还有人生认知上,有很多需要向米老师学习的地方,有很多需要大家帮助的地方,也有很多需要我自己克服的地方,仅以此文记录下和老师交流的几个问题,供大家思考。一,贝叶斯定理贝叶斯公式贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。其中P(A|B)是在B发生的情况下A发生的可能性。请问:左边的A,B和右边的A,B一样的吗?答:既一样,又不一样一样在
- 【机器学习笔记】贝叶斯学习
住在天上的云
机器学习机器学习笔记学习贝叶斯学习人工智能
贝叶斯学习文章目录贝叶斯学习1贝叶斯学习背景2贝叶斯定理3最大后验假设MAP(MaxAPosterior)4极大似然假设ML(MaximumLikelihood)5朴素贝叶斯NB6最小描述长度MDL1贝叶斯学习背景试图发现两件事情的关系(因果关系,先决条件&结论)。执果索因:肺炎→肺癌?不好确定,换成确诊肺癌得肺炎的概率2贝叶斯定理贝叶斯定理是一种用先验慨率来推断后验慨率的公式,它可以表示为:P(
- 机器学习:朴素贝叶斯笔记
Ningbo_JiaYT
机器学习机器学习笔记分类算法
朴素贝叶斯(NaiveBayes)是一种基于贝叶斯定理的简单概率分类算法,广泛应用于机器学习和数据挖掘中。“朴素”体现在对特征之间的独立性做出了假设,即一个特征或者一个属性的出现不依赖于其他特征的出现。目录基本原理1.贝叶斯定理2.朴素的独立性假设贝叶斯定理1.简介2.贝叶斯公式算法过程1.训练模型2.预测类别类型注意事项基本原理1.贝叶斯定理朴素贝叶斯算法的核心是贝叶斯定理,即对于给定的样本数据
- 机器学习 | 探索朴素贝叶斯算法的应用
亦世凡华、
#机器学习机器学习算法人工智能朴素贝叶斯经验分享
朴素贝叶斯算法是一种基于贝叶斯定理和特征条件独立假设的分类算法。它被广泛应用于文本分类、垃圾邮件过滤、情感分析等领域,并且在实际应用中表现出色。朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法:1)对于给定的待分类项r,通过学习到的模型计算后验概率分布。2)此项出现的条件下各个目标类别出现的概率,将后验概率最大的类作为α所属的类别。核心思想:是利用特征之间的条件独立性,来对给定的数据进行分
- 4 朴素贝叶斯
奋斗的喵儿
1定义朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法2.算法及实例极大似然估计:在这里插入图片描述在这里插入图片描述在这里插入图片描述贝叶斯估计:在这里插入图片描述在这里插入图片描述总结:朴素贝叶斯法是典型的生成学习方法。生成方法由训练数据学习联合概率分布P(X,Y),然后求后验概率分布P(Y|X)。即利用训练数据学习P(X|Y)和P(Y)的估计,得到联合概率分布在这里插入图片描述朴素贝
- (三)推断的逼近方法-通过加权重采样的贝叶斯定理
Jay Morein
数据科学和Python实现python
加权重采样importnumpyasnpimportmatplotlib.pyplotasplt#Step1:Generate10,000randomthetavaluesfromU([0,1])n=10000theta_values=np.random.rand(n)#Definethefunctiontocomputeweightsforagiventhetadefcompute_weight
- 第七章 朴素贝叶斯机器学习
颜大哦
人工智能学习笔记机器学习人工智能
朴素贝叶斯是一组功能强大且易于训练的分类器,它使用贝叶斯定理来确定给定一组条件的结果的概率,“朴素”的含义是指所给定的条件都能独立存在和发生.朴素贝叶斯是多用途分类器,能在很多不同的情景下找到它的应用,例如垃圾邮件过滤、自然语言处理等.一.概率1.定义概率是反映随机事件出现的可能性大小.随机事件是指在相同条件下,可能出现也可能不出现的事件.例如:(1)抛一枚硬币,可能正面朝上,可能反面朝上,这是随
- 机器学习_15_贝叶斯算法
少云清
机器学习机器学习算法概率论贝叶斯算法
文章目录1贝叶斯定理相关公式2朴素贝叶斯算法2.1朴素贝叶斯算法推导2.2朴素贝叶斯算法流程3高斯朴素贝叶斯4伯努利朴素贝叶斯5多项式朴素贝叶斯6贝叶斯网络6.1最简单的一个贝叶斯网络6.2全连接贝叶斯网络6.3“正常”贝叶斯网络6.4实际贝叶斯网络:判断是否下雨6.5贝叶斯网络判定条件独立-016.6贝叶斯网络判定条件独立-026.7贝叶斯网络判定条件独立-031贝叶斯定理相关公式**先验概率P
- 贝叶斯的缺点
人机与认知实验室
机器学习人工智能
贝叶斯方法是一种统计学习方法,通过利用贝叶斯定理来计算给定先验概率的情况下,后验概率的条件概率。虽然贝叶斯方法在许多领域中应用广泛且有效,但也存在一些缺点。以下是一些贝叶斯方法的缺点的例子:1、先验概率的选择贝叶斯方法依赖于先验概率的选择,先验概率的不准确性可能导致后验概率的不准确性。选择先验概率是非常困难的,特别是在没有明确领域知识或可靠数据支持的情况下。2、计算复杂度在贝叶斯方法中,计算后验概
- 机器学习系列——(七)简单分类算法
飞影铠甲
机器学习机器学习分类人工智能
机器学习是目前人工智能领域最热门的分支之一,其中朴素贝叶斯分类算法是一种常用的分类算法。本文将详细介绍朴素贝叶斯分类算法的原理、应用以及优缺点。一、原理朴素贝叶斯分类算法是一种基于贝叶斯定理的分类算法。在分类问题中,我们需要根据给定的数据集,将不同的实例分成不同的类别。朴素贝叶斯分类算法的核心思想就是利用已知类别的训练数据来估计每个特征对于分类结果的影响,并通过这些特征值的联合概率分布来确定新实例
- 【NLP冲吖~】一、朴素贝叶斯(Naive Bayes)
漂泊老猫
自然语言处理NLP自然语言处理人工智能机器学习
0、朴素贝叶斯法朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布,然后基于此模型,对给定的输入xxx,利用贝叶斯定理求出后验概率最大的输出yyy。朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。从数学角度,定义分类问题如下:已知集合C=y1,y2,...,ynC={y_1,y_2,...,y_n}C=y1
- 朴素贝叶斯算法
汪汪军师
贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。贝叶斯公式:换种写法:例题:患有贝叶死的情况下,测出为阳性的概率为P(A|B1)=99.9%,没有患贝叶死,但测出为阳性的概率为P(A|B2)=0.1%。对万分之一的解读:。患有贝叶死的概率为P(B1)=0.01%,没有患贝叶死的概率P(B2)=99.
- NLP深入学习(四):贝叶斯算法详解及分类/拼写检查用法
Smaller、FL
NLP算法自然语言处理学习nlp
文章目录0.引言1.什么是贝叶斯定理2.贝叶斯常见实用场景3.贝叶斯用于垃圾邮件分类4.基于贝叶斯算法实现拼写检查器5.参考0.引言前情提要:《NLP深入学习(一):jieba工具包介绍》《NLP深入学习(二):nltk工具包介绍》《NLP深入学习(三):TF-IDF详解以及文本分类/聚类用法》1.什么是贝叶斯定理贝叶斯算法是基于贝叶斯(Bayes)定理的一类统计推断方法,主要用于分类和预测问题。
- 【分类模型学习】-朴素贝叶斯
lowindow
分类问题综述分类问题在生活中很常见,我们可以从数学角度做如下定义:已知类别集合和待分类项集合,需要确定出映射规则,使得任意的有且仅有一个使得成立朴素贝叶斯方法朴素贝叶斯法(NaiveBayesmodel)是基于贝叶斯定理与特征条件独立假设的分类方法,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。即在中找到最大的,
- 从三个例子理解贝叶斯定理
城市中迷途小书童
TimeFlies##贝叶斯定理推荐阅读:如何理解贝叶斯公式?条件概率,全概率,贝叶斯公式理解警察抓酒鬼问题描述:酒鬼有90%概率外出喝酒,只有可能在A、B、C三个酒吧,概率相等,警察想去抓酒鬼,已知去了前两个酒吧都没抓到他,求去第三个酒吧抓到酒鬼的概率。自己的解法:用A、B代替前两个酒吧,C代替最后一个酒吧,C=1代表在酒吧C中抓到酒鬼,C=0代表没有在酒吧C中抓到酒鬼在C=1发生的情况下,A=
- 机器学习 -- 朴素贝叶斯分类器
北堂飘霜
pythonAI机器学习人工智能
场景朴素贝叶斯分类器是一种基于贝叶斯定理的简单概率分类器,广泛应用于各种机器学习场景。朴素贝叶斯分类器利用贝叶斯定理来预测一个数据点的类别。贝叶斯定理提供了一种计算条件概率的方法,即在已知某些信息的情况下,事件发生的概率。“朴素”一词源于该算法对特征之间相互独立的假设。在现实世界中,这种假设可能并不总是成立,但朴素贝叶斯在实践中仍然表现良好。对于给定的训练数据集,算法首先基于类别计算特征的概率分布
- 贝叶斯分类器(公式推导+举例应用)
Nie同学
机器学习机器学习分类
文章目录引言贝叶斯决策论先验概率和后验概率极大似然估计朴素贝叶斯分类器朴素贝叶斯分类器的优点与缺点优点缺点总结实验分析引言在机器学习的世界中,有一类强大而受欢迎的算法——贝叶斯分类器,它倚仗着贝叶斯定理和朴素的独立性假设,成为解决分类问题的得力工具。这种算法的独特之处在于其对概率的建模,使得它在面对不确定性和大规模特征空间时表现卓越。本文将深入探讨贝叶斯分类器,首先通过详细的公式推导带你走进其内部
- 机器学习笔记E4--朴素贝叶斯
EL33
按照计划今天该是整理到朴素贝叶斯了,但是线性回归的实现和逻辑回归都还没有完成,欠的东西越来越多。预备知识贝叶斯定理(BayesianTheorem)先验概率与后验概率朴素贝叶斯分类器何为“朴素”:属性条件独立性假设分类准则离散属性与连续属性值的分别处理例子讲解拉普拉斯修正(Laplaciancorrection)了解朴素贝叶斯需要先了解贝叶斯定理,深入了解朴素贝叶斯朴素贝叶斯分类器
- java线程的无限循环和退出
3213213333332132
java
最近想写一个游戏,然后碰到有关线程的问题,网上查了好多资料都没满足。
突然想起了前段时间看的有关线程的视频,于是信手拈来写了一个线程的代码片段。
希望帮助刚学java线程的童鞋
package thread;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date
- tomcat 容器
BlueSkator
tomcatWebservlet
Tomcat的组成部分 1、server
A Server element represents the entire Catalina servlet container. (Singleton) 2、service
service包括多个connector以及一个engine,其职责为处理由connector获得的客户请求。
3、connector
一个connector
- php递归,静态变量,匿名函数使用
dcj3sjt126com
PHP递归函数匿名函数静态变量引用传参
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
- 属性颜色字体变化
周华华
JavaScript
function changSize(className){
var diva=byId("fot")
diva.className=className;
}
</script>
<style type="text/css">
.max{
background: #900;
color:#039;
- 将properties内容放置到map中
g21121
properties
代码比较简单:
private static Map<Object, Object> map;
private static Properties p;
static {
//读取properties文件
InputStream is = XXX.class.getClassLoader().getResourceAsStream("xxx.properti
- [简单]拼接字符串
53873039oycg
字符串
工作中遇到需要从Map里面取值拼接字符串的情况,自己写了个,不是很好,欢迎提出更优雅的写法,代码如下:
import java.util.HashMap;
import java.uti
- Struts2学习
云端月影
最近开始关注struts2的新特性,从这个版本开始,Struts开始使用convention-plugin代替codebehind-plugin来实现struts的零配置。
配置文件精简了,的确是简便了开发过程,但是,我们熟悉的配置突然disappear了,真是一下很不适应。跟着潮流走吧,看看该怎样来搞定convention-plugin。
使用Convention插件,你需要将其JAR文件放
- Java新手入门的30个基本概念二
aijuans
java新手java 入门
基本概念: 1.OOP中唯一关系的是对象的接口是什么,就像计算机的销售商她不管电源内部结构是怎样的,他只关系能否给你提供电就行了,也就是只要知道can or not而不是how and why.所有的程序是由一定的属性和行为对象组成的,不同的对象的访问通过函数调用来完成,对象间所有的交流都是通过方法调用,通过对封装对象数据,很大限度上提高复用率。 2.OOP中最重要的思想是类,类是模板是蓝图,
- jedis 简单使用
antlove
javarediscachecommandjedis
jedis.RedisOperationCollection.java
package jedis;
import org.apache.log4j.Logger;
import redis.clients.jedis.Jedis;
import java.util.List;
import java.util.Map;
import java.util.Set;
pub
- PL/SQL的函数和包体的基础
百合不是茶
PL/SQL编程函数包体显示包的具体数据包
由于明天举要上课,所以刚刚将代码敲了一遍PL/SQL的函数和包体的实现(单例模式过几天好好的总结下再发出来);以便明天能更好的学习PL/SQL的循环,今天太累了,所以早点睡觉,明天继续PL/SQL总有一天我会将你永远的记载在心里,,,
函数;
函数:PL/SQL中的函数相当于java中的方法;函数有返回值
定义函数的
--输入姓名找到该姓名的年薪
create or re
- Mockito(二)--实例篇
bijian1013
持续集成mockito单元测试
学习了基本知识后,就可以实战了,Mockito的实际使用还是比较麻烦的。因为在实际使用中,最常遇到的就是需要模拟第三方类库的行为。
比如现在有一个类FTPFileTransfer,实现了向FTP传输文件的功能。这个类中使用了a
- 精通Oracle10编程SQL(7)编写控制结构
bijian1013
oracle数据库plsql
/*
*编写控制结构
*/
--条件分支语句
--简单条件判断
DECLARE
v_sal NUMBER(6,2);
BEGIN
select sal into v_sal from emp
where lower(ename)=lower('&name');
if v_sal<2000 then
update emp set
- 【Log4j二】Log4j属性文件配置详解
bit1129
log4j
如下是一个log4j.properties的配置
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appe
- java集合排序笔记
白糖_
java
public class CollectionDemo implements Serializable,Comparable<CollectionDemo>{
private static final long serialVersionUID = -2958090810811192128L;
private int id;
private String nam
- java导致linux负载过高的定位方法
ronin47
定位java进程ID
可以使用top或ps -ef |grep java
![图片描述][1]
根据进程ID找到最消耗资源的java pid
比如第一步找到的进程ID为5431
执行
top -p 5431 -H
![图片描述][2]
打印java栈信息
$ jstack -l 5431 > 5431.log
在栈信息中定位具体问题
将消耗资源的Java PID转
- 给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数
bylijinnan
函数
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class RandNFromRand5 {
/**
题目:给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数。
解法1:
f(k) = (x0-1)*5^0+(x1-
- PL/SQL Developer保存布局
Kai_Ge
近日由于项目需要,数据库从DB2迁移到ORCAL,因此数据库连接客户端选择了PL/SQL Developer。由于软件运用不熟悉,造成了很多麻烦,最主要的就是进入后,左边列表有很多选项,自己删除了一些选项卡,布局很满意了,下次进入后又恢复了以前的布局,很是苦恼。在众多PL/SQL Developer使用技巧中找到如下这段:
&n
- [未来战士计划]超能查派[剧透,慎入]
comsci
计划
非常好看,超能查派,这部电影......为我们这些热爱人工智能的工程技术人员提供一些参考意见和思想........
虽然电影里面的人物形象不是非常的可爱....但是非常的贴近现实生活....
&nbs
- Google Map API V2
dai_lm
google map
以后如果要开发包含google map的程序就更麻烦咯
http://www.cnblogs.com/mengdd/archive/2013/01/01/2841390.html
找到篇不错的文章,大家可以参考一下
http://blog.sina.com.cn/s/blog_c2839d410101jahv.html
1. 创建Android工程
由于v2的key需要G
- java数据计算层的几种解决方法2
datamachine
javasql集算器
2、SQL
SQL/SP/JDBC在这里属于一类,这是老牌的数据计算层,性能和灵活性是它的优势。但随着新情况的不断出现,单纯用SQL已经难以满足需求,比如: JAVA开发规模的扩大,数据量的剧增,复杂计算问题的涌现。虽然SQL得高分的指标不多,但都是权重最高的。
成熟度:5星。最成熟的。
- Linux下Telnet的安装与运行
dcj3sjt126com
linuxtelnet
Linux下Telnet的安装与运行 linux默认是使用SSH服务的 而不安装telnet服务 如果要使用telnet 就必须先安装相应的软件包 即使安装了软件包 默认的设置telnet 服务也是不运行的 需要手工进行设置 如果是redhat9,则在第三张光盘中找到 telnet-server-0.17-25.i386.rpm
- PHP中钩子函数的实现与认识
dcj3sjt126com
PHP
假如有这么一段程序:
function fun(){
fun1();
fun2();
}
首先程序执行完fun1()之后执行fun2()然后fun()结束。
但是,假如我们想对函数做一些变化。比如说,fun是一个解析函数,我们希望后期可以提供丰富的解析函数,而究竟用哪个函数解析,我们希望在配置文件中配置。这个时候就可以发挥钩子的力量了。
我们可以在fu
- EOS中的WorkSpace密码修改
蕃薯耀
修改WorkSpace密码
EOS中BPS的WorkSpace密码修改
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--SpringSecurity相关配置【SpringSecurityConfig】
hanqunfeng
SpringSecurity
SpringSecurity的配置相对来说有些复杂,如果是完整的bean配置,则需要配置大量的bean,所以xml配置时使用了命名空间来简化配置,同样,spring为我们提供了一个抽象类WebSecurityConfigurerAdapter和一个注解@EnableWebMvcSecurity,达到同样减少bean配置的目的,如下:
applicationContex
- ie 9 kendo ui中ajax跨域的问题
jackyrong
AJAX跨域
这两天遇到个问题,kendo ui的datagrid,根据json去读取数据,然后前端通过kendo ui的datagrid去渲染,但很奇怪的是,在ie 10,ie 11,chrome,firefox等浏览器中,同样的程序,
浏览起来是没问题的,但把应用放到公网上的一台服务器,
却发现如下情况:
1) ie 9下,不能出现任何数据,但用IE 9浏览器浏览本机的应用,却没任何问题
- 不要让别人笑你不能成为程序员
lampcy
编程程序员
在经历六个月的编程集训之后,我刚刚完成了我的第一次一对一的编码评估。但是事情并没有如我所想的那般顺利。
说实话,我感觉我的脑细胞像被轰炸过一样。
手慢慢地离开键盘,心里很压抑。不禁默默祈祷:一切都会进展顺利的,对吧?至少有些地方我的回答应该是没有遗漏的,是不是?
难道我选择编程真的是一个巨大的错误吗——我真的永远也成不了程序员吗?
我需要一点点安慰。在自我怀疑,不安全感和脆弱等等像龙卷风一
- 马皇后的贤德
nannan408
马皇后不怕朱元璋的坏脾气,并敢理直气壮地吹耳边风。众所周知,朱元璋不喜欢女人干政,他认为“后妃虽母仪天下,然不可使干政事”,因为“宠之太过,则骄恣犯分,上下失序”,因此还特地命人纂述《女诫》,以示警诫。但马皇后是个例外。
有一次,马皇后问朱元璋道:“如今天下老百姓安居乐业了吗?”朱元璋不高兴地回答:“这不是你应该问的。”马皇后振振有词地回敬道:“陛下是天下之父,
- 选择某个属性值最大的那条记录(不仅仅包含指定属性,而是想要什么属性都可以)
Rainbow702
sqlgroup by最大值max最大的那条记录
好久好久不写SQL了,技能退化严重啊!!!
直入主题:
比如我有一张表,file_info,
它有两个属性(但实际不只,我这里只是作说明用):
file_code, file_version
同一个code可能对应多个version
现在,我想针对每一个code,取得它相关的记录中,version 值 最大的那条记录,
SQL如下:
select
*
- VBScript脚本语言
tntxia
VBScript
VBScript 是基于VB的脚本语言。主要用于Asp和Excel的编程。
VB家族语言简介
Visual Basic 6.0
源于BASIC语言。
由微软公司开发的包含协助开发环境的事
- java中枚举类型的使用
xiao1zhao2
javaenum枚举1.5新特性
枚举类型是j2se在1.5引入的新的类型,通过关键字enum来定义,常用来存储一些常量.
1.定义一个简单的枚举类型
public enum Sex {
MAN,
WOMAN
}
枚举类型本质是类,编译此段代码会生成.class文件.通过Sex.MAN来访问Sex中的成员,其返回值是Sex类型.
2.常用方法
静态的values()方