MySQL实战

写在前面,博客基本依据极客时间林晓斌MySQL实战45讲。

MySQL实战

  • 基础篇
    • 基础架构:SQL查询语句的执行流程
      • 连接器
      • 查询缓存
      • 分析器
      • 优化器
      • 执行器
      • 思考题
    • 日志系统:更新语句的执行流程
      • 重做日志 redo log
      • 归档日志 binlog
      • 两阶段提交
      • 总结
      • 思考题
    • 事物隔离
      • 隔离性与隔离级别
      • 隔离的实现
      • 事务的启动方式
      • 思考题
    • 深入嵌入索引:上
      • 索引的常见模型
      • InnoDB的索引模型
      • 索引维护
      • 思考题
    • 深入浅出索引:下
      • 覆盖索引
      • 最左前缀原则
      • 索引下推
      • 小结以及思考题
    • 全局锁和表锁
      • 全局锁:
      • 表级锁
      • 总结和思考题
    • 行锁功过:怎么减少行锁对性能的影响
      • 从两段锁讲起
    • 死锁和死锁检测
      • 思考题
    • 事务到底是隔离还是不隔离的
      • “快照”在 MVCC 里是怎么工作的?
      • 更新逻辑
      • 小结以及思考题
  • 实践篇
    • 普通索引和唯一索引
      • B树
      • B+树
        • 卫星数据
      • 查询过程
        • 更新过程
        • change buffer 的使用场景
        • 索引选择和实践
        • change buffer 和 redo log
      • 思考题
    • MySQL 为什么会有时候会选错索引
      • 优化器的逻辑
      • 索引选择异常和处理
      • 思考题
    • 怎么给字符串字段加索引

基础篇

基础架构:SQL查询语句的执行流程

MySQL实战_第1张图片
大体来说,MySQL可以分为Sever 层和存储引擎层两部分。
Server层包括连接器,查询缓存,分析器,优化器和执行器,涵盖MySQL的大多数核心服务功能,以及所有的内置函数(时间、日期、数学和加密函数),所有跨存储引擎的功能都在这一层实现,比如存储过程,触发器,视图。

存储引擎层负责数据的存储和提取。其架构模式是插件式的,支持innoDB, MyISAM,Memory等多个存储引擎,现在最常用的存储引擎是innoDB,从MySQL 5.5.5版本开始成为了默认的引擎。

也就是说,你执行 create table 建表的时候,如果不指定引擎类型,默认使用的就是 InnoDB。不过,你也可以通过指定存储引擎的类型来选择别的引擎,比如在 create table 语句中使用 engine=memory, 来指定使用内存引擎创建表。不同存储引擎的表数据存取方式不同,支持的功能也不同。

不同的存储引擎共用一个 Server 层,也就是从连接器到执行器的部分。

连接器

第一步,你会先连接到这个数据库上,这时候接待你的就是连接器。连接器负责跟客户端建立连接、获取权限、维持和管理连接。连接命令一般是这么写的:

// 命令中 -h 或者 -u后面直接接端口号和用户名字
mysql -h$ip -P$port -u$user -p

连接命令中的 mysql 是客户端工具,用来跟服务端建立连接。在完成经典的 TCP 握手后,连接器就要开始认证你的身份,这个时候用的就是你输入的用户名和密码。
如果用户名或密码不对,你就会收到一个"Access denied for user"的错误,然后客户端程序结束执行。
如果用户名密码认证通过,连接器会到权限表里面查出你拥有的权限。之后,这个连接里面的权限判断逻辑,都将依赖于此时读到的权限。

连接完成之后,如果没有后续的动作,这个连接就处于空闲状态,命令show processlist 可以看到,sleep表示这个连接是空闲的。

MySQL实战_第2张图片
客户端如果太长时间没有发出请求,这个连接器就会断开,具体时间是由参数 wait_timeout控制的,默认是 8 小时。
连接被断开之后客户端再想发出请求,会得到一个错误提醒,Lost connection to MySQL server during query,需要重新进行连接。

数据库里面,长连接是指连接成功后,如果客户端持续有请求,则一直使用同一个连接。短连接则是指每次执行完很少的几次查询就断开连接,下次查询再重新建立一个。

建立连接的过程是复杂的,因此一般尽量使用长连接。长连接可能导致MySQL占用内存特别多,这是因为MySQL在执行过程中临时使用的内存管理在连接对象里面,这些资源在连接断开之后才释放,如果长时间积累下来,可能导致内存占用过高,被系统强行杀掉(OOM- out of memory)。从现象看来就是MySQL异常重启了。

针对以上两种情况,可以考虑两种方案:

1.定期断开长连接。使用一段时间,或者程序里面判断执行过一个占用内存的大查询后,断开连接,之后要查询再重连。
2.如果你用的是 MySQL 5.7 或更新版本,可以在每次执行一个比较大的操作后,通过执行 mysql_reset_connection 来重新初始化连接资源。这个过程不需要重连和重新做权限验证,但是会将连接恢复到刚刚创建完时的状态。

查询缓存

连接建立完成后,你就可以执行 select 语句了。执行逻辑就会来到第二步:查询缓存。

MySQL 拿到一个查询请求后,会先到查询缓存看看,之前是不是执行过这条语句。之前执行过的语句及其结果可能会以 key-value 对的形式,被直接缓存在内存中。key 是查询的语句,value 是查询的结果。如果你的查询能够直接在这个缓存中找到 key,那么这个 value 就会被直接返回给客户端。

MySQL 也提供了这种“按需使用”的方式。你可以将参数 query_cache_type 设置成 DEMAND,这样对于默认的 SQL 语句都不使用查询缓存。而对于你确定要使用查询缓存的语句,可以用 SQL_CACHE 显式指定,像下面这个语句一样:

mysql> select SQL_CACHE * from T where ID=10

但是在 8.0中查询缓存的整块功能都被删除掉了(所以redis天下第一

分析器

没有命中缓存,就开始真正执行语句了,分析器先会做“词法分析”。你输入的是由多个字符串和空格组成的一条 SQL 语句,MySQL 需要识别出里面的字符串分别是什么,代表什么。MySQL 从你输入的"select"这个关键字识别出来,这是一个查询语句。它也要把字符串“T”识别成“表名 T”,把字符串“ID”识别成“列 ID”。做完了这些识别以后,就要做“语法分析”。根据词法分析的结果,语法分析器会根据语法规则,判断你输入的这个 SQL 语句是否满足 MySQL 语法。如果你的语句不对,就会收到“You have an error in your SQL syntax”的错误提醒,比如下面这个语句 select 少打了开头的字母“s”。

mysql> elect * from t where ID=1;
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'elect * from t where ID=1' at line 1

优化器

mysql> select * from t1 join t2 using(ID)  where t1.c=10 and t2.d=20;
  • 既可以先从表 t1 里面取出 c=10 的记录的 ID 值,再根据 ID 值关联到表 t2,再判断 t2 里面 d 的值是否等于 20。
  • 也可以先从表 t2 里面取出 d=20 的记录的 ID 值,再根据 ID 值关联到 t1,再判断 t1 里面 c 的值是否等于 10。

这两种执行方法的逻辑结果是一样的,但是执行的效率会有不同,而优化器的作用就是决定选择使用哪一个方案。

//以下这两种写法效果一样,using(attr)的作用等于 on 的作用
select a.name,b.age from test as a
join test2 as b
on a.id=b.id ;

select a.name,b.age from test as a
join test2 as b
using(id)

执行器

开始执行的时候,要先判断一下你对这个表 T 有没有执行查询的权限,如果没有,就会返回没有权限的错误,如下所示 (在工程实现上,如果命中查询缓存,会在查询缓存返回结果的时候,做权限验证。查询也会在优化器之前调用 precheck 验证权限)。

mysql> select * from T where ID=10;

如果有权限,就打开表继续执行。打开表的时候,执行器就会根据表的引擎定义,去使用这个引擎提供的接口。
比如我们这个例子中的表 T 中,ID 字段没有索引,那么执行器的执行流程是这样的:

  • 调用 InnoDB 引擎接口取这个表的第一行,判断 ID 值是不是 10,如果不是则跳过,如果是则将这行存在结果集中;
  • 调用引擎接口取“下一行”,重复相同的判断逻辑,直到取到这个表的最后一行。
  • 执行器将上述遍历过程中所有满足条件的行组成的记录集作为结果集返回给客户端。

你会在数据库的慢查询日志中看到一个 rows_examined 的字段,表示这个语句执行过程中扫描了多少行。这个值就是在执行器每次调用引擎获取数据行的时候累加的。

在有些场景下,执行器调用一次,在引擎内部则扫描了多行,因此引擎扫描行数跟 rows_examined 并不是完全相同的。

思考题

1.如果表 T 中没有字段 k,而你执行了这个语句 select * from T where k=1, 那肯定是会报“不存在这个列”的错误: “Unknown column ‘k’ in ‘where clause’”。你觉得这个错误是在我们上面提到的哪个阶段报出来的呢?

   分析器



日志系统:更新语句的执行流程

  • MySQL可以恢复到半个月内任意一秒的状态

创建一张表格

mysql> create table T(ID int primary key, c int);

如果要设置 ID=2,这一行的值+1;SQL语句

mysql> update T set c=c+1 where ID=2;

MySQL实战_第3张图片
重新看回这个图,前面一节我们说过,如果在一个表上有做更新,更这个表有关系的查询缓存会被失效,所以这条语句就会把T上所有的缓存结果清空,这就是我们一般不建议使用缓存的原因。

优化器决定要使用 ID 这个索引。然后,执行器负责具体执行,找到这一行,然后更新。

与查询流程不一样的是,更新流程还涉及两个重要的日志模块,它们正是我们今天要讨论的主角:redo log(重做日志)和 binlog(归档日志)。

重做日志 redo log

不知道你还记不记得《孔乙己》这篇文章,酒店掌柜有一个粉板,专门用来记录客人的赊账记录。如果赊账的人不多,那么他可以把顾客名和账目写在板上。但如果赊账的人多了,粉板总会有记不下的时候,这个时候掌柜一定还有一个专门记录赊账的账本。(DNA动了

如果有人要赊账或者还账的话,掌柜一般有两种做法:

  • 一种做法是直接把账本翻出来,把这次赊的账加上去或者扣除掉;
  • 另一种做法是先在粉板上记下这次的账,等打烊以后再把账本翻出来核算。

在生意红火柜台很忙时,掌柜一定会选择后者,因为前者操作实在是太麻烦了。首先,你得找到这个人的赊账总额那条记录。你想想,密密麻麻几十页,掌柜要找到那个名字,可能还得带上老花镜慢慢找,找到之后再拿出算盘计算,最后再将结果写回到账本上。

这整个过程想想都麻烦。相比之下,还是先在粉板上记一下方便。你想想,如果掌柜没有粉板的帮助,每次记账都得翻账本,效率是不是低得让人难以忍受?

同样,在 MySQL 里也有这个问题,如果每一次的更新操作都需要写进磁盘,然后磁盘也要找到对应的那条记录,然后再更新,整个过程 IO 成本、查找成本都很高。为了解决这个问题,MySQL 的设计者就用了类似酒店掌柜粉板的思路来提升更新效率。

而粉板和账本配合的整个过程,其实就是 MySQL 里经常说到的 WAL 技术,WAL 的全称是 Write-Ahead Logging,它的关键点就是先写日志,再写磁盘,也就是先写粉板,等不忙的时候再写账本。

具体来说,当有一条记录需要更新的时候,InnoDB 引擎就会先把记录写到 redo log(粉板)里面,并更新内存,这个时候更新就算完成了。同时,InnoDB 引擎会在适当的时候,将这个操作记录更新到磁盘里面,而这个更新往往是在系统比较空闲的时候做,这就像打烊以后掌柜做的事。

如果今天赊账的不多,掌柜可以等打烊后再整理。但如果某天赊账的特别多,粉板写满了,又怎么办呢?这个时候掌柜只好放下手中的活儿,把粉板中的一部分赊账记录更新到账本中,然后把这些记录从粉板上擦掉,为记新账腾出空间。

与此类似,InnoDB 的 redo log 是固定大小的,比如可以配置为一组 4 个文件,每个文件的大小是 1GB,那么这块“粉板”总共就可以记录 4GB 的操作。从头开始写,写到末尾就又回到开头循环写,如下面这个图所示。

MySQL实战_第4张图片

MySQL实战_第5张图片

  • write pos 是当前记录的位置,一边写一边后移,写到第 3 号文件末尾后就回到 0 号文件开头。
  • checkpoint 是当前要擦除的位置,也是往后推移并且循环的,擦除记录前要把记录更新到数据文件。
  • write pos 和 checkpoint 之间的是“粉板”上还空着的部分,可以用来记录新的操作。如果 write pos 追上 checkpoint,表示“粉板”满了,这时候不能再执行新的更新,得停下来先擦掉一些记录,把 checkpoint 推进一下。

有了 redo log,InnoDB 就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个能力称为 crash-safe

要理解 crash-safe 这个概念,可以想想我们前面赊账记录的例子。只要赊账记录记在了粉板上或写在了账本上,之后即使掌柜忘记了,比如突然停业几天,恢复生意后依然可以通过账本和粉板上的数据明确赊账账目。

归档日志 binlog

上面聊到的粉板redo log是innoDB引擎特有的日志,也就是属于引擎层的日志,而对于Server也有自己的日志,叫做 binlog (归档日志)

最开始 MySQL 里并没有 InnoDB 引擎。MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog 日志只能用于归档。而 InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统——也就是 redo log 来实现 crash-safe 能力。

这两种日志有以下三点不同:

1.redo log 是 InnoDB 引擎特有的;binlog 是 MySQL 的 Server 层实现的,所有引擎都可以使用。
2.redo log 是物理日志,记录的是“在某个数据页上做了什么修改”;binlog 是逻辑日志,记录的是这个语句的原始逻辑,比如“给 ID=2 这一行的 c 字段加 1 ”。
3.redo log 是循环写的,空间固定会用完;binlog 是可以追加写入的。“追加写”是指 binlog 文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。

有了对这两个日志的概念性理解,我们再来看执行器和 InnoDB 引擎在执行这个简单的 update 语句时的内部流程。

1.执行器先找引擎取 ID=2 这一行。ID 是主键,引擎直接用树搜索找到这一行。如果 ID=2 这一行所在的数据页本来就在内存中,就直接返回给执行器;否则,需要先从磁盘读入内存,然后再返回。

2.执行器拿到引擎给的行数据,把这个值加上 1,比如原来是 N,现在就是 N+1,得到新的一行数据,再调用引擎接口写入这行新数据。

3.引擎将这行新数据更新到内存中,同时将这个更新操作记录到 redo log 里面,此时 redo log 处于 prepare 状态。然后告知执行器执行完成了,随时可以提交事务。

4.执行器生成这个操作的 binlog,并把 binlog 写入磁盘。

5.执行器调用引擎的提交事务接口,引擎把刚刚写入的 redo log 改成提交(commit)状态,更新完成。

如下是update 语句的执行流程图,图中浅色框表示是在 InnoDB 内部执行的,深色框表示是在执行器中执行的。

MySQL实战_第6张图片
你可能注意到了,最后三步看上去有点“绕”,将 redo log 的写入拆成了两个步骤:prepare 和 commit,这就是"两阶段提交"。

两阶段提交

两阶段提交的根本目的是为了保证两份日志之间的一致性。
binlog会记录所有的逻辑操作,并且采用追加写的形式,如果DBA承诺半个月内的数据库可以恢复,那么备份系统中一定保存着半个月内所有的binlog,并且对数据库进行定期的整库备份,这里的“定期” 取决于系统的重要性。

当需要恢复到指定的某一秒时,比如某天下午两点发现中午十二点有一次误删表,需要找回数据,那你可以这么做:

  • 首先,找到最近的一次全量备份,如果你运气好,可能就是昨天晚上的一个备份,从这个备份恢复到临时库;

  • 然后,从备份的时间点开始,将备份的 binlog 依次取出来,重放到中午误删表之前的那个时刻。

这样你的临时库就跟误删之前的线上库一样了,然后你可以把表数据从临时库取出来,按需要恢复到线上库去。

好了,说完了数据恢复过程,我们回来说说,为什么日志需要“两阶段提交”。这里不妨用反证法来进行解释。由于 redo log 和 binlog 是两个独立的逻辑,如果不用两阶段提交,**要么就是先写完 redo log 再写 binlog,或者采用反过来的顺序。我们看看这两种方式会有什么问题。**仍然用前面的 update 语句来做例子。假设当前 ID=2 的行,字段 c 的值是 0,再假设执行 update 语句过程中在写完第一个日志后,第二个日志还没有写完期间发生了 crash,会出现什么情况呢?

1.先写 redo log 后写 binlog。 假设在 redo log 写完,binlog 还没有写完的时候,MySQL 进程异常重启。由于我们前面说过的,redo log 写完之后,系统即使崩溃,仍然能够把数据恢复回来,所以恢复后这一行 c 的值是 1。 但是由于 binlog 没写完就 crash 了,这时候 binlog 里面就没有记录这个语句。因此,之后备份日志的时候,存起来的 binlog 里面就没有这条语句。然后你会发现,如果需要用这个 binlog 来恢复临时库的话,由于这个语句的 binlog 丢失,这个临时库就会少了这一次更新,恢复出来的这一行 c 的值就是 0,与原库的值不同。
2.先写 binlog 后写 redo log。 如果在 binlog 写完之后 crash,由于 redo log 还没写,崩溃恢复以后这个事务无效,所以这一行 c 的值是 0。但是 binlog 里面已经记录了“把 c 从 0 改成 1”这个日志。所以,在之后用 binlog 来恢复的时候就多了一个事务出来,恢复出来的这一行 c 的值就是 1,与原库的值不同。

当你需要扩容的时候,也就是需要再多搭建一些备库来增加系统的读能力的时候,现在常见的做法也是用全量备份加上应用 binlog 来实现的,这个“不一致”就会导致你的线上出现主从数据库不一致的情况。

简单说,redo log 和 binlog 都可以用于表示事务的提交状态,而两阶段提交就是让这两个状态保持逻辑上的一致。

总结

redo log 用于保证 crash-safe 能力。innodb_flush_log_at_trx_commit 这个参数设置成 1 的时候,表示每次事务的 redo log 都直接持久化到磁盘。这个参数我建议你设置成 1,这样可以保证 MySQL 异常重启之后数据不丢失。

sync_binlog 这个参数设置成 1 的时候,表示每次事务的 binlog 都持久化到磁盘。这个参数我也建议你设置成 1,这样可以保证 MySQL 异常重启之后 binlog 不丢失。

(就是保证redo log 和 binlog两个日志的安全性,没有了日志,MySQL就失去了灵魂)

我还跟你介绍了与 MySQL 日志系统密切相关的“两阶段提交”。两阶段提交是跨系统维持数据逻辑一致性时常用的一个方案,即使你不做数据库内核开发,日常开发中也有可能会用到。
(redolog不是持久保存的,而binlog是持久保存的)

思考题

定期全量备份的周期“取决于系统重要性,有的是一天一备,有的是一周一备”。那么在什么场景下,一天一备会比一周一备更有优势呢?或者说,它影响了这个数据库系统的哪个指标?

一天一备份就需要完整备份这天的binlog以及数据库,一周一备份,需要保存着这一周的binlog以及之前的一个数据库;
相比而言,一天一备份在恢复的时候肯定更快,因为只需要从前一天开始重放起,而一周需要从周一开始重放。一般来说,对于重放时间更加看重。每天备份带来的IO操作的成本或许是微不足道的。
对应的指标是恢复目标时间——RTO,当然这个RTO是有成本的,因为需要更加频繁地进行全量备份需要消耗更多的存储空间。




事物隔离

一组数据库操作,要么全部成功要么全部失败,在MySQL中,事物支持是在引擎层实现的,MySQL是一个支持多引擎的系统,但并不是所有的引擎都支持事务,比如MySQL的MyISAM引擎就不支持事务,这也是为什么为innoDB所取代的原因之一。

隔离性与隔离级别

提到事务,你肯定会想到 ACID(Atomicity、Consistency、Isolation、Durability,即原子性、一致性、隔离性、持久性),今天我们就来说说其中 I,也就是“隔离性”。当数据库上有多个事务同时执行的时候,就可能出现脏读(dirty read)、不可重复读(non-repeatable read)、幻读(phantom read)的问题,为了解决这些问题,就有了“隔离级别”的概念。

在谈隔离级别之前,你首先要知道,你隔离得越严实,效率就会越低。因此很多时候,我们都要在二者之间寻找一个平衡点。SQL 标准的事务隔离级别包括:读未提交(read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(serializable )。

  • 读未提交是指,一个事务还没提交时,它做的变更就能被别的事务看到。
  • 读提交是指,一个事务提交之后,它做的变更才会被其他事务看到。
  • 可重复读是指,一个事务执行过程中看到的数据,总是跟这个事务在启动时看到的数据是一致的。当然在可重复读隔离级别下,未提交变更对其他事务也是不可见的。
  • 串行化,顾名思义是对于同一行记录,“写”会加“写锁”,“读”会加“读锁”。当出现读写锁冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行。

接下来使用下面这个例子来说明以上几种隔离的不同之处,这行代码表示这个数据库的初始状态,只有一条数据

mysql> create table T(c int) engine=InnoDB;
insert into T(c) values(1);

MySQL实战_第7张图片
我们来看看在不同的隔离级别下,事务 A 会有哪些不同的返回结果,也就是图里面 V1、V2、V3 的返回值分别是什么。

  • 若隔离级别是“读未提交”, 则 V1 的值就是 2。这时候事务 B 虽然还没有提交,但是结果已经被 A 看到了。因此,V2、V3 也都是 2。
  • 若隔离级别是“读提交”,则 V1 是 1,V2 的值是 2。事务 B 的更新在提交后才能被 A 看到。所以, V3 的值也是 2。
  • 若隔离级别是“可重复读”,则 V1、V2 是 1,V3 是 2。之所以 V2 还是 1,遵循的就是这个要求:事务在执行期间看到的数据前后必须是一致的。
  • 若隔离级别是“串行化”,则在事务 B 执行“将 1 改成 2”的时候,会被锁住。直到事务 A 提交后,事务 B 才可以继续执行。所以从 A 的角度看, V1、V2 值是 1,V3 的值是 2。

在实现上,数据库里面会创建一个视图,访问的时候以视图的逻辑结果为准。

  • 在“可重复读”隔离级别下,这个视图是在事务启动时创建的,整个事务存在期间都用这个视图。
  • 在“读提交”隔离级别下,这个视图是在每个 SQL 语句开始执行的时候创建的。
  • 这里需要注意的是,“读未提交”隔离级别下直接返回记录上的最新值,没有视图概念;
  • 而“串行化”隔离级别下直接用加锁的方式来避免并行访问。

我们可以看到在不同的隔离级别下,数据库行为是有所不同的。Oracle 数据库的默认隔离级别其实就是“读提交”,因此对于一些从 Oracle 迁移到 MySQL 的应用,为保证数据库隔离级别的一致,你一定要记得将 MySQL 的隔离级别设置为“读提交”。

配置的方式是,将启动参数 transaction-isolation 的值设置成 READ-COMMITTED。 你可以用 show variables 来查看当前的值。

mysql> show variables like 'transaction_isolation';

+-----------------------+----------------+

| Variable_name | Value |

+-----------------------+----------------+

| transaction_isolation | READ-COMMITTED |

+-----------------------+----------------+

总结来说,存在即合理,每种隔离级别都有自己的使用场景,你要根据自己的业务情况来定。我想你可能会问那什么时候需要**“可重复读”**的场景呢?我们来看一个数据校对逻辑的案例。

假设你在管理一个个人银行账户表。一个表存了账户余额,一个表存了账单明细。到了月底你要做数据校对,也就是判断上个月的余额和当前余额的差额,是否与本月的账单明细一致。你一定希望在校对过程中,即使有用户发生了一笔新的交易,也不影响你的校对结果。

这时候使用“可重复读”隔离级别就很方便。事务启动时的视图可以认为是静态的,不受其他事务更新的影响。

隔离的实现

理解了事务的隔离之后,我们再来看看事务隔离具体是怎么实现的,这里我们用“可重复读”为例子来展开。

在 MySQL 中,实际上每条记录在更新的时候都会同时记录一条回滚操作。记录上的最新值,通过回滚操作,都可以得到前一个状态的值。
假设一个值从 1 被按顺序改成了 2、3、4,在回滚日志里面就会有类似下面的记录。(图中的指针是往回指的,表示这是一个回滚日志)

MySQL实战_第8张图片

当前值是 4,但是在查询这条记录的时候,不同时刻启动的事务会有不同的 read-view。如图中看到的,在视图 A、B、C 里面,这一个记录的值分别是 1、2、4,同一条记录在系统中可以存在多个版本,就是数据库的多版本并发控制(MVCC)。对于 read-view A,要得到 1,就必须将当前值依次执行图中所有的回滚操作得到。

同时你会发现,即使现在有另外一个事务正在将 4 改成 5,这个事务跟 read-view A、B、C 对应的事务是不会冲突的。

你一定会问,回滚日志总不能一直保留吧,什么时候删除呢?答案是,在不需要的时候才删除。也就是说,系统会判断,当没有事务再需要用到这些回滚日志时,回滚日志会被删除。什么时候才不需要了呢?就是当系统里没有比这个回滚日志更早的 read-view 的时候。基于上面的说明,我们来讨论一下为什么建议你尽量不要使用长事务。

长事务意味着系统里面会存在很老的事务视图。由于这些事务随时可能访问数据库里面的任何数据,所以这个事务提交之前,数据库里面它可能用到的回滚记录都必须保留,这就会导致大量占用存储空间。

在 MySQL 5.5 及以前的版本,回滚日志是跟数据字典一起放在 ibdata 文件里的,即使长事务最终提交,回滚段被清理,文件也不会变小。我见过数据只有 20GB,而回滚段有 200GB 的库。最终只好为了清理回滚段,重建整个库。

除了对回滚段的影响,长事务还占用锁资源,也可能拖垮整个库。

事务的启动方式

如前面所述,长事务有这些潜在风险,我当然是建议你尽量避免。其实很多时候业务开发同学并不是有意使用长事务,通常是由于误用所致。MySQL 的事务启动方式有以下几种:

1.显式启动事务语句, begin 或 start transaction。配套的提交语句是 commit,回滚语句是 rollback。
2.set autocommit=0,这个命令会将这个线程的自动提交关掉。意味着如果你只执行一个 select 语句,这个事务就启动了,而且并不会自动提交。这个事务持续存在直到你主动执行 commit 或 rollback 语句,或者断开连接。

有些客户端连接框架会默认连接成功后先执行一个 set autocommit=0 的命令。这就导致接下来的查询都在事务中,如果是长连接,就导致了意外的长事务。

因此,我会建议你总是使用 set autocommit=1, 通过显式语句的方式来启动事务。

但是有的开发同学会纠结“多一次交互”的问题。对于一个需要频繁使用事务的业务,第二种方式每个事务在开始时都不需要主动执行一次 “begin”,减少了语句的交互次数。如果你也有这个顾虑,我建议你使用 commit work and chain 语法。

在 autocommit 为 1 的情况下,用 begin 显式启动的事务,如果执行 commit 则提交事务。如果执行 commit work and chain,则是提交事务并自动启动下一个事务,这样也省去了再次执行 begin 语句的开销。同时带来的好处是从程序开发的角度明确地知道每个语句是否处于事务中。

在MYSQL命令行的默认设置下,事务都是自动提交的,即执行SQL语句后就会马上执行COMMIT操作。

1)START TRANSACTION | BEGIN

显式的开启一个事务。在存储过程中,MYSQL数据库的分析器会自动将BEGIN识别为BEGIN…END,因此在存储过程中只能使用START TRANSACTION语句来开启一个事务。

2)COMMIT

要想使用这个语句的最简形式,只需发出COMMIT。COMMIT会提交事务,并使已对数据库进行的所有修改成为永久性的。COMMIT和COMMIT WORK语句基本上是一致的,都是用来提交事务。

不同的是COMMIT WORK用来控制事务结束后的行为是CHAIN还是RELEASE的。如果是CHAIN方式,那么事务就变成了链事务。用户可以通过参数completion_type来进行控制,默认该参数是0,表示没有任何操作。

(1)当参数completion_type的值为1时,commit work等同于commit and chain,表示马上自动开启一个相同隔离级别的事务;
(2)参数complection_type为2时,commit work等同于commit and release。当事务提交后自动断开与服务器的连接。

你可以在 information_schema 库的 innodb_trx 这个表中查询长事务,比如下面这个语句,用于查找持续时间超过 60s 的事务。(innodb引擎内置的一个表格,用于记录数据库正在运行的事务)

select * from information_schema.innodb_trx where TIME_TO_SEC(timediff(now(),trx_started))>60

在information_schema库中有三个表可以查看,分别是innodb_locks, innodb_trx, innodb_lock_waits.

innodb_trx表的结构(该表只用来显示当前运行innodb事务情况,不能判断锁的情况):

MySQL实战_第9张图片

思考题

现在我们已经知道了在系统中应该尽量避免长事务,如果你是系统开发负责人同时也是数据库负责人,你会有什么方案来避免出现或者处理这种情况?

在开发过程中,尽可能减少长事务,如果无法避免,保证逻辑日志空间足够用,并且支持动态日志空间增长,监控 innodb_trx 表格,发现长事务报警。

answer:
首先,从应用开发端来看:

  • 确认是否使用了 set autocommit=0。这个确认工作可以在测试环境中开展,把 MySQL 的 general_log 开起来,然后随便跑一个业务逻辑,通过 general_log 的日志来确认。一般框架如果会设置这个值,也就会提供参数来控制行为,你的目标就是把它改成 1。
  • 确认是否有不必要的只读事务。有些框架会习惯不管什么语句先用 begin/commit 框起来。我见过有些是业务并没有这个需要,但是也把好几个 select 语句放到了事务中。这种只读事务可以去掉。
  • 业务连接数据库的时候,根据业务本身的预估,通过 SET MAX_EXECUTION_TIME 命令,来控制每个语句执行的最长时间,避免单个语句意外执行太长时间。(为什么会意外?在后续的文章中会提到这类案例)

其次,从数据库端来看:

  • 监控 information_schema.Innodb_trx 表,设置长事务阈值,超过就报警 / 或者 kill;
  • Percona 的 pt-kill 这个工具不错,推荐使用;
  • 在业务功能测试阶段要求输出所有的 general_log,分析日志行为提前发现问题;
  • 如果使用的是 MySQL 5.6 或者更新版本,把 innodb_undo_tablespaces 设置成 2(或更大的值)。如果真的出现大事务导致回滚段过大,这样设置后清理起来更方便。



深入嵌入索引:上

索引的提出就是为了提高查询的效率。

索引的常见模型

哈希表: 哈希表是一种以 键值对 key-value 存储数据的结构,我们只要输入待查找的键key就可以找到对应的value。 哈希的思路很简单,用一个哈希函数把key换算成一个确定的位置(求了一个index索引),然后把value放在数组的这个位置。

不可避免地,多个 key 值经过哈希函数的换算,会出现同一个值的情况。处理这种情况的一种方法是,拉出一个链表。

假设,你现在维护着一个身份证信息和姓名的表,需要根据身份证号查找对应的名字,这时对应的哈希索引的示意图如下所示:

MySQL实战_第10张图片

图中,User2 和 User4 根据身份证号算出来的值都是 N,但没关系,后面还跟了一个链表。假设,这时候你要查 ID_card_n2 对应的名字是什么,处理步骤就是:首先,将 ID_card_n2 通过哈希函数算出 N;然后,按顺序遍历,找到 User2。

需要注意的是,图中四个 ID_card_n 的值并不是递增的,这样做的好处是增加新的 User 时速度会很快,只需要往后追加(就是说name4排在了name2前面是允许的)。但缺点是,因为不是有序的,所以哈希索引做区间查询的速度是很慢的。

所以,哈希表这种结构适用于只有等值查询的场景,比如 Memcached 及其他一些 NoSQL 引擎。等值查询就是 where == 的操作。

有序数组
而有序数组在等值查询和范围查询场景中的性能就都非常优秀。还是上面这个根据身份证号查名字的例子,如果我们使用有序数组来实现的话,示意图如下所示:
MySQL实战_第11张图片
这里我们假设身份证号没有重复,这个数组就是按照身份证号递增的顺序保存的。这时候如果你要查 ID_card_n2 对应的名字,用二分法就可以快速得到,这个时间复杂度是 O(log(N))。

同时很显然,这个索引结构支持范围查询。你要查身份证号在[ID_card_X, ID_card_Y]区间的 User,可以先用二分法找到 ID_card_X(如果不存在 ID_card_X,就找到大于 ID_card_X 的第一个 User),然后向右遍历,直到查到第一个大于 ID_card_Y 的身份证号,退出循环。

如果仅仅看查询效率,有序数组就是最好的数据结构了。但是,在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。

所以,有序数组索引只适用于静态存储引擎,比如你要保存的是 2017 年某个城市的所有人口信息,这类不会再修改的数据。

二叉树
MySQL实战_第12张图片
二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。这样如果你要查 ID_card_n2 的话,按照图中的搜索顺序就是按照 UserA -> UserC -> UserF -> User2 这个路径得到。这个时间复杂度是 O(log(N))。

当然为了维持 O(log(N)) 的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是 O(log(N))

树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。

你可以想象一下一棵 100 万节点的平衡二叉树,树高 20。一次查询可能需要访问 20 个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要 10 ms 左右的寻址时间。也就是说,对于一个 100 万行的表,如果使用二叉树来存储,单独访问一个行可能需要 20 个 10 ms 的时间,这个查询可真够慢的。

也就是说,树太高了,必须从根节点出发,判断是大于当前节点还是小于当前节点,每个节点都要进行20次的判断。

MySQL实战_第13张图片
为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小。

以 InnoDB 的一个整数字段索引为例,这个 N 差不多是 1200。这棵树高是 4 的时候,就可以存 1200 的 3 次方个值,这已经 17 亿了。考虑到树根的数据块总是在内存中的,一个 10 亿行的表上一个整数字段的索引,查找一个值最多只需要访问 3 次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。

N 叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。

InnoDB的索引模型

InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的。

使用innoDB建一个主键列为 ID 的表,表中有字段 k,并且在 k 上有索引。

mysql> create table T(
id int primary key, 
k int not null, 
name varchar(16),
index (k))engine=InnoDB;

表中 R1~R5 的 (ID,k) 值分别为 (100,1)、(200,2)、(300,3)、(500,5) 和 (600,6),两棵树的示例示意图如下。MySQL实战_第14张图片
从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引。主键索引的叶子节点存的是整行数据。
在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)。
非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(secondary index)。

  • 如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;
  • 如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表。

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询

索引维护

B+ 树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上面这个图为例,如果插入新的行 ID 值为 700,则只需要在 R5 的记录后面插入一个新记录。如果新插入的 ID 值为 400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。

而更糟的情况是,如果 R5 所在的数据页已经满了,根据 B+ 树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。

除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约 50%。

当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。


基于上面的索引维护过程说明,我们来讨论一个案例:

  • 你可能在一些建表规范里面见到过类似的描述,要求建表语句里一定要有自增主键。当然事无绝对,我们来分析一下哪些场景下应该使用自增主键,而哪些场景下不应该

自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: not
null primary key auto_increment(插入新记录的时候可以不指定 ID 的值,系统会获取当前 ID 最大值加 1 作为下一条记录的 ID 值)。

  • 也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。
  • B+树到底是个什么东西

锚点

除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?

**由于每个非主键索引的叶子节点上都是主键的值。**如果用身份证号做主键,那么每个二级索引的叶子节点占用约 20 个字节,而如果用整型做主键,则只要 4 个字节,如果是长整型(bigint)则是 8 个字节。

显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

所以,从性能和存储空间方面考量,自增主键往往是更合理的选择。

有没有什么场景适合用业务字段直接做主键的呢?还是有的。比如,有些业务的场景需求是这样的:

  • 只有一个索引;
  • 该索引必须是唯一索引。

由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。

这时候我们就要优先考虑上一段提到的“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树。

思考题

B+ 树能够很好地配合磁盘的读写特性,减少单次查询的磁盘访问次数。

对于上面例子中的 InnoDB 表 T,如果你要重建索引 k,你的两个 SQL 语句可以这么写:

alter table T drop index k;
alter table T add index(k);

如果你要重建主键索引,也可以这么写:

alter table T drop primary key;
alter table T add primary key(id);

对于上面这两个重建索引的作法,说出你的理解。如果有不合适的,为什么,更好的方法是什么?

重建索引 k 的做法是合理的,可以达到省空间的目的。但是,重建主键的过程不合理。不论是删除主键还是创建主键,都会将整个表重建。所以连着执行这两个语句的话,第一个语句就白做了。这两个语句,你可以用这个语句代替 : alter table T engine=InnoDB。

深入浅出索引:下

首先初始化一个表格:

mysql> create table T (
ID int primary key,
k int NOT NULL DEFAULT 0, 
s varchar(16) NOT NULL DEFAULT '',
index k(k))
engine=InnoDB;

insert into T values(100,1, 'aa'),(200,2,'bb'),(300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');

MySQL实战_第15张图片

现在,我们一起来看看这条 SQL 查询语句的执行流程:

  • 1.在 k 索引树上找到 k=3 的记录,取得 ID = 300;
  • 2.再到 ID 索引树查到 ID=300 对应的 R3;
  • 3.在 k 索引树取下一个值 k=5,取得 ID=500;
  • 4.再回到 ID 索引树查到 ID=500 对应的 R4;
  • 5.在 k 索引树取下一个值 k=6,不满足条件,循环结束。

在这个过程中,**回到主键索引树搜索的过程,我们称为回表。**可以看到,这个查询过程读了 k 索引树的 3 条记录(步骤 1、3 和 5),回表了两次(步骤 2 和 4)。

  • 在这个例子中,由于查询结果所需要的数据只在主键索引上有,所以不得不回表。那么,有没有可能经过索引优化,避免回表过程呢?

覆盖索引

如果执行的语句是 select ID from T where k between 3 and 5,这时只需要查 ID 的值,而 ID 的值已经在 k 索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引 k 已经“覆盖了”我们的查询需求,我们称为覆盖索引。

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

基于上面覆盖索引的说明,我们来讨论一个问题:在一个市民信息表上,是否有必要将身份证号和名字建立联合索引?

假设这个市民表的定义是这样的:

CREATE TABLE `tuser` (
  `id` int(11) NOT NULL,
  `id_card` varchar(32) DEFAULT NULL,
  `name` varchar(32) DEFAULT NULL,
  `age` int(11) DEFAULT NULL,
  `ismale` tinyint(1) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `id_card` (`id_card`),
  KEY `name_age` (`name`,`age`)
) ENGINE=InnoDB

我们知道,身份证号是市民的唯一标识。也就是说,如果有根据身份证号查询市民信息的需求,我们只要在身份证号字段上建立索引就够了。而再建立一个(身份证号、姓名)的联合索引,是不是浪费空间?

如果现在有一个高频请求,要根据市民的身份证号查询他的姓名,这个联合索引就有意义了。它可以在这个高频请求上用到覆盖索引,不再需要回表查整行记录,减少语句的执行时间。

当然,索引字段的维护总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这正是业务 DBA,或者称为业务数据架构师的工作。

最左前缀原则

看到这里你一定有一个疑问,如果为每一种查询都设计一个索引,索引是不是太多了。如果我现在要按照市民的身份证号去查他的家庭地址呢?虽然这个查询需求在业务中出现的概率不高,但总不能让它走全表扫描吧?反过来说,单独为一个不频繁的请求创建一个(身份证号,地址)的索引又感觉有点浪费。应该怎么做呢?

answer: B+ 树这种索引结构,可以利用索引的“最左前缀”,来定位记录。
为了直观地说明这个概念,我们用(name,age)这个联合索引来分析

MySQL实战_第16张图片

可以看到,索引项是按照索引定义里面出现的字段顺序排序的。

当你的逻辑需求是查到所有名字是“张三”的人时,可以快速定位到 ID4,然后向后遍历得到所有需要的结果。

如果你要查的是所有名字第一个字是“张”的人,你的 SQL 语句的条件是"where name like ‘张 %’"。这时,你也能够用上这个索引,查找到第一个符合条件的记录是 ID3,然后向后遍历,直到不满足条件为止

可以看到,不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左 N 个字段,也可以是字符串索引的最左 M 个字符。

  • 基于上面对最左前缀索引的说明,我们来讨论一个问题:在建立联合索引的时候,如何安排索引内的字段顺序。

这里我们的评估标准是,索引的复用能力。因为可以支持最左前缀,所以当已经有了 (a,b) 这个联合索引后,一般就不需要单独在 a 上建立索引了。因此,第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。

所以现在你知道了,这段开头的问题里,我们要为高频请求创建 (身份证号,姓名)这个联合索引,并用这个索引支持“根据身份证号查询地址”的需求。

那么,如果既有联合查询,又有基于 a、b 各自的查询呢?查询条件里面只有 b 的语句,是无法使用 (a,b) 这个联合索引的,这时候你不得不维护另外一个索引,也就是说你需要同时维护 (a,b)、(b) 这两个索引。

这时候,我们要考虑的原则就是空间了。比如上面这个市民表的情况,name 字段是比 age 字段大的 ,那我就建议你创建一个(name,age) 的联合索引和一个 (age) 的单字段索引。

索引下推

上一段我们说到满足最左前缀原则的时候,最左前缀可以用于在索引中定位记录。这时,你可能要问,那些不符合最左前缀的部分,会怎么样呢?

我们还是以市民表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是 10 岁的所有男孩”。那么,SQL 语句是这么写的:

mysql> select * from tuser where name like '张%' and age=10 and ismale=1;

你已经知道了前缀索引规则,所以这个语句在搜索索引树的时候,只能用 “张”,找到第一个满足条件的记录 ID3。当然,这还不错,总比全表扫描要好。然后呢?当然是判断其他条件是否满足。在 MySQL 5.6 之前,只能从 ID3 开始一个个回表。到主键索引上找出数据行,再对比字段值。而 MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。下图 是这两个过程的执行流程图。

无索引下推执行流程

MySQL实战_第17张图片

索引下推执行流程

MySQL实战_第18张图片
在图 3 和 4 这两个图里面,每一个虚线箭头表示回表一次。

图 3 中,在 (name,age) 索引里面我特意去掉了 age 的值,这个过程 InnoDB 并不会去看 age 的值,只是按顺序把“name 第一个字是’张’”的记录一条条取出来回表。因此,需要回表 4 次。

图 4 跟图 3 的区别是,InnoDB 在 (name,age) 索引内部就判断了 age 是否等于 10,对于不等于 10 的记录,直接判断并跳过。在我们的这个例子中,只需要对 ID4、ID5 这两条记录回表取数据判断,就只需要回表 2 次。

小结以及思考题

在满足语句需求的情况下, 尽量少地访问资源是数据库设计的重要原则之一

思考题
实际上主键索引也是可以使用多个字段的。DBA 小吕在入职新公司的时候,就发现自己接手维护的库里面,有这么一个表,表结构定义类似这样的:

CREATE TABLE `geek` (
  `a` int(11) NOT NULL,
  `b` int(11) NOT NULL,
  `c` int(11) NOT NULL,
  `d` int(11) NOT NULL,
  PRIMARY KEY (`a`,`b`),
  KEY `c` (`c`),
  KEY `ca` (`c`,`a`),
  KEY `cb` (`c`,`b`)
) ENGINE=InnoDB;

但是,学过本章内容的小吕又纳闷了,既然主键包含了 a、b 这两个字段,那意味着单独在字段 c 上创建一个索引,就已经包含了三个字段了呀,为什么要创建“ca”“cb”这两个索引?

同事告诉他,是因为他们的业务里面有这样的两种语句:

select * from geek where c=N order by a limit 1;
select * from geek where c=N order by b limit 1;

你觉得他同事的解释对吗?

表记录

a b c d
1 2 3 d
1 3 2 d
1 4 3 d
2 1 3 d
2 2 2 d
2 3 4 d

主键 a,b 的聚簇索引组织顺序相当于 order by a,b ,也就是先按 a 排序,再按 b 排序,c 无序。

索引 ca 的组织是先按 c 排序,再按 a 排序,同时记录主键

c a b
2 1 3
2 2 2
3 1 2
3 1 4
3 2 1
4 2 3

这个跟索引 c 的数据是一模一样的。索引 cb 的组织是先按 c 排序,在按 b 排序,同时记录主键

c b a
2 2 2
2 3 1
3 1 2
3 2 1
3 4 1
4 3 2

因此结论是(c,a)可以去掉,cb需要保留。因为本身数据就是按照a 进行排序的,因此,(c,a)就等价与 c 。

全局锁和表锁

数据库锁设计的初衷是处理并发问题。作为多用户共享的资源,当出现并发访问的时候,数据库需要合理地控制资源的访问规则。 而锁就是用来实现这些访问规则的重要数据结构。

根据加锁的范围,MySQL 里面的锁大致可以分成全局锁、表级锁和行锁三类:

全局锁:

顾名思义,全局锁就是对整个数据库实例加锁。MySQL 提供了一个加全局读锁的方法,命令是 Flush tables with read lock (FTWRL)。当你需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句。

**全局锁的典型使用场景是,做全库逻辑备份。**也就是把整库每个表都 select 出来存成文本。

以前有一种做法,是通过 FTWRL 确保不会有其他线程对数据库做更新,然后对整个库做备份。注意,在备份过程中整个库完全处于只读状态。

但是让整库都只读,听上去就很危险:

  • 如果你在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆;
  • 如果你在从库上备份,那么备份期间从库不能执行主库同步过来的 binlog,会导致主从延迟。

看来加全局锁不太好。但是细想一下,备份为什么要加锁呢?我们来看一下不加锁会有什么问题。

假设你现在要维护“极客时间”的购买系统,关注的是用户账户余额表和用户课程表。现在发起一个逻辑备份。假设备份期间,有一个用户,他购买了一门课程,业务逻辑里就要扣掉他的余额,然后往已购课程里面加上一门课。如果时间顺序上是先备份账户余额表 (u_account),然后用户购买,然后备份用户课程表 (u_course),会怎么样呢?你可以看一下这个图:

MySQL实战_第19张图片

可以看到,这个备份结果里,用户 A 的数据状态是“账户余额没扣,但是用户课程表里面已经多了一门课”。如果后面用这个备份来恢复数据的话,用户 A 就发现,自己赚了。

也就是说,不加锁的话,备份系统备份的得到的库不是一个逻辑时间点,这个视图是逻辑不一致的。说到视图你肯定想起来了,我们在前面讲事务隔离的时候,其实是有一个方法能够拿到一致性视图的,对吧?是的,就是在可重复读隔离级别下开启一个事务。

官方自带的逻辑备份工具是 mysqldump。当 mysqldump 使用参数–single-transaction 的时候,导数据之前就会启动一个事务,来确保拿到一致性视图。而由于 MVCC 的支持,这个过程中数据是可以正常更新的。

你一定在疑惑,有了这个功能,为什么还需要 FTWRL 呢?一致性读是好,但前提是引擎要支持这个隔离级别。 比如,对于 MyISAM 这种不支持事务的引擎,如果备份过程中有更新,总是只能取到最新的数据,那么就破坏了备份的一致性。这时,我们就需要使用 FTWRL 命令了。

你也许会问,既然要全库只读,为什么不使用 set global readonly=true 的方式呢?确实 readonly 方式也可以让全库进入只读状态,但我还是会建议你用 FTWRL 方式,主要有两个原因

  • 一是,在有些系统中,readonly 的值会被用来做其他逻辑,比如用来判断一个库是主库还是备库。因此,修改 global 变量的方式影响面更大,我不建议你使用。
  • 二是,在异常处理机制上有差异。如果执行 FTWRL 命令之后由于客户端发生异常断开,那么 MySQL 会自动释放这个全局锁,整个库回到可以正常更新的状态。而将整个库设置为 readonly 之后,如果客户端发生异常,则数据库就会一直保持 readonly 状态,这样会导致整个库长时间处于不可写状态,风险较高。

业务的更新不只是增删改数据(DML),还有可能是加字段等修改表结构的操作(DDL)。不论是哪种方法,一个库被全局锁上以后,你要对里面任何一个表做加字段操作,都是会被锁住的。

但是,即使没有被全局锁住,加字段也不是就能一帆风顺的,因为你还会碰到接下来我们要介绍的表级锁。

表级锁

MySQL 里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)。

表锁的语法是 lock tables … read/write。 与 FTWRL 类似,可以用 unlock tables 主动释放锁,也可以在客户端断开的时候自动释放。需要注意,lock tables 语法除了会限制别的线程的读写外,也限定了本线程接下来的操作对象。

举个例子, 如果在某个线程 A 中执行 lock tables t1 read, t2 write; 这个语句,则其他线程写 t1、读写 t2 的语句都会被阻塞。同时,线程 A 在执行 unlock tables 之前,也只能执行读 t1、读写 t2 的操作。连写 t1 都不允许,自然也不能访问其他表。

在还没有出现更细粒度的锁的时候,表锁是最常用的处理并发的方式。而对于 InnoDB 这种支持行锁的引擎,一般不使用 lock tables 命令来控制并发,毕竟锁住整个表的影响面还是太大。

另一类表级的锁是 MDL(metadata lock)。 MDL 不需要显式使用,在访问一个表的时候会被自动加上。MDL 的作用是,保证读写的正确性。你可以想象一下,如果一个查询正在遍历一个表中的数据,而执行期间另一个线程对这个表结构做变更,删了一列,那么查询线程拿到的结果跟表结构对不上,肯定是不行的。

因此,在 MySQL 5.5 版本中引入了 MDL,当对一个表做增删改查操作的时候,加 MDL 读锁;当要对表做结构变更操作的时候,加 MDL 写锁

  • 读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。
  • 读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执行。

给一个表加字段,或者修改字段,或者加索引,需要扫描全表的数据。在对大表操作的时候,需要特别小心,以免对线上服务造成影响。而实际上,即使是小表,操作不慎也会出问题。我们来看一下下面的操作序列,假设表 t 是一个小表。

MySQL实战_第20张图片
我们可以看到 session A 先启动,这时候会对表 t 加一个 MDL 读锁。由于 session B 需要的也是 MDL 读锁,因此可以正常执行。之后 session C 会被 blocked,是因为 session A 的 MDL 读锁还没有释放,而 session C 需要 MDL 写锁,因此只能被阻塞。如果只有 session C 自己被阻塞还没什么关系,但是之后所有要在表 t 上新申请 MDL 读锁的请求也会被 session C 阻塞。前面我们说了,所有对表的增删改查操作都需要先申请 MDL 读锁,就都被锁住,等于这个表现在完全不可读写了。如果某个表上的查询语句频繁,而且客户端有重试机制,也就是说超时后会再起一个新 session 再请求的话,这个库的线程很快就会爆满。你现在应该知道了,事务中的 MDL 锁,在语句执行开始时申请,但是语句结束后并不会马上释放,而会等到整个事务提交后再释放。

基于上面的分析,我们来讨论一个问题,如何安全地给小表加字段?

首先我们要解决长事务,事务不提交,就会一直占着 MDL 锁。在 MySQL 的 information_schema 库的 innodb_trx 表中,你可以查到当前执行中的事务。如果你要做 DDL 变更的表刚好有长事务在执行,要考虑先暂停 DDL,或者 kill 掉这个长事务。

但考虑一下这个场景。如果你要变更的表是一个热点表,虽然数据量不大,但是上面的请求很频繁,而你不得不加个字段,你该怎么做呢?这时候 kill 可能未必管用,因为新的请求马上就来了。比较理想的机制是,在 alter table 语句里面设定等待时间,如果在这个指定的等待时间里面能够拿到 MDL 写锁最好,拿不到也不要阻塞后面的业务语句,先放弃。之后开发人员或者 DBA 再通过重试命令重复这个过程。

MariaDB 已经合并了 AliSQL 的这个功能,所以这两个开源分支目前都支持 DDL NOWAIT/WAIT n 这个语法。

ALTER TABLE tbl_name NOWAIT add column ...
ALTER TABLE tbl_name WAIT N add column ... 

data definition language,是数据定义语言。DDL主要的命令有CREATE、ALTER、DROP等,DDL主要是用在定义或改变表(TABLE)的结构,数据类型,表之间的链接和约束等初始化工作上,它们多在建立表时使用。

修改表是指修改数据库中已经存在的表的定义。修改表比重新定义表简单,不需要重新加载数据,也不会影响正在进行的服务。

总结和思考题

全局锁主要用在逻辑备份过程中。对于全部是 InnoDB 引擎的库,我建议你选择使用–single-transaction 参数,对应用会更友好。表锁一般是在数据库引擎不支持行锁的时候才会被用到的。如果你发现你的应用程序里有 lock tables 这样的语句,你需要追查一下,比较可能的情况是:

  • 要么是你的系统现在还在用 MyISAM 这类不支持事务的引擎,那要安排升级换引擎;
  • 要么是你的引擎升级了,但是代码还没升级。我见过这样的情况,最后业务开发就是把 lock tables 和 unlock tables 改成 begin 和 commit,问题就解决了。

MDL锁 会直到事务提交才释放,在做表结构变更的时候,你一定要小心不要导致锁住线上查询和更新。

思考题
最后,我给你留一个问题吧。备份一般都会在备库上执行,你在用–single-transaction 方法做逻辑备份的过程中,如果主库上的一个小表做了一个 DDL,比如给一个表上加了一列。这时候,从备库上会看到什么现象呢?

假设这个DDL操作是针对表格t1的,这里涉及到几个关键语句

在备份开始的时候,为了确保 RR(可重复读)隔离级别,再设置一次 RR 隔离级别 (Q1);
Q1:SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;
启动事务,这里用 WITH CONSISTENT SNAPSHOT 确保这个语句执行完就可以得到一个一致性视图(Q2);	
Q2:START TRANSACTION  WITH CONSISTENT SNAPSHOT/* other tables */
Q3:SAVEPOINT sp; 设置一个保存点,这个很重要(Q3);
/* 时刻 1 */
Q4:show create table `t1`;
/* 时刻 2 */
Q5:SELECT * FROM `t1`;
/* 时刻 3 */
Q6:ROLLBACK TO SAVEPOINT sp;
/* 时刻 4 */
/* other tables */

show create 是为了拿到表结构 (Q4),然后正式导数据 (Q5),回滚到 SAVEPOINT sp,在这里的作用是释放 t1 的 MDL 锁 (Q6)。当然这部分属于“超纲”,上文正文里面都没提到。

1.如果在 Q4 语句执行之前到达,现象:没有影响,备份拿到的是 DDL 后的表结构。
2.如果在“时刻 2”到达,则表结构被改过,Q5 执行的时候,报 Table definition has changed, please retry transaction,现象:mysqldump 终止;3.如果在“时刻 2”和“时刻 3”之间到达,mysqldump 占着 t1 的 MDL 读锁,binlog 被阻塞,现象:主从延迟,直到 Q6 执行完成。
4.从“时刻 4”开始,mysqldump 释放了 MDL 读锁,现象:没有影响,备份拿到的是 DDL 前的表结构。

行锁功过:怎么减少行锁对性能的影响

上一节中讲过了全局锁和表级锁,这一节来讲讲行锁。
表锁每次都要对整个表做上锁处理,代价未免还是太高,如果能只针对某一行进行加锁,就能有效提高业务的并发度。

从两段锁讲起

MySQL实战_第21张图片
这个问题的结论取决于事务 A 在执行完两条 update 语句后,持有哪些锁,以及在什么时候释放。你可以验证一下:实际上事务 B 的 update 语句会被阻塞,直到事务 A 执行 commit 之后,事务 B 才能继续执行。

知道了这个答案,你一定知道了事务 A 持有的两个记录的行锁,都是在 commit 的时候才释放的。

也就是说,在 InnoDB 事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。

知道了这个设定,对我们使用事务有什么帮助呢?那就是,如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。 我给你举个例子。

假设你负责实现一个电影票在线交易业务,顾客 A 要在影院 B 购买电影票。我们简化一点,这个业务需要涉及到以下操作:

  • 1.从顾客 A 账户余额中扣除电影票价;
  • 2.给影院 B 的账户余额增加这张电影票价;
  • 3.记录一条交易日志。

也就是说,要完成这个交易,我们需要 update 两条记录,并 insert 一条记录。当然,为了保证交易的原子性,我们要把这三个操作放在一个事务中。那么,你会怎样安排这三个语句在事务中的顺序呢?

试想如果同时有另外一个顾客 C 要在影院 B 买票,那么这两个事务冲突的部分就是语句 2 了。因为它们要更新同一个影院账户的余额,需要修改同一行数据。

根据两阶段锁协议,不论你怎样安排语句顺序,所有的操作需要的行锁都是在事务提交的时候才释放的。所以,如果你把语句 2 安排在最后,比如按照 3、1、2 这样的顺序,那么影院账户余额这一行的锁时间就最少。这就最大程度地减少了事务之间的锁等待,提升了并发度。

根据两阶段锁协议,不论你怎样安排语句顺序,所有的操作需要的行锁都是在事务提交的时候才释放的。所以,如果你把语句 2 安排在最后,比如按照 3、1、2 这样的顺序,那么影院账户余额这一行的锁时间就最少。这就最大程度地减少了事务之间的锁等待,提升了并发度。

好了,现在由于你的正确设计,影院余额这一行的行锁在一个事务中不会停留很长时间。但是,这并没有完全解决你的困扰。

如果这个影院做活动,可以低价预售一年内所有的电影票,而且这个活动只做一天。于是在活动时间开始的时候,你的 MySQL 就挂了。你登上服务器一看,CPU 消耗接近 100%,但整个数据库每秒就执行不到 100 个事务。这是什么原因呢?

这里,我就要说到死锁和死锁检测了。

死锁和死锁检测

当并发系统中不同线程出现循环资源依赖,涉及的线程都在等待别的线程释放资源时,就会导致这几个线程都进入无限等待的状态,称为死锁。这里我用数据库中的行锁举个例子。

MySQL实战_第22张图片

这时候,事务 A 在等待事务 B 释放 id=2 的行锁,而事务 B 在等待事务 A 释放 id=1 的行锁。 事务 A 和事务 B 在互相等待对方的资源释放,就是进入了死锁状态。当出现死锁以后,有两种策略:

  • 一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数 innodb_lock_wait_timeout 来设置。
  • 另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on,表示开启这个逻辑。

在 InnoDB 中,innodb_lock_wait_timeout 的默认值是 50s,意味着如果采用第一个策略,当出现死锁以后,第一个被锁住的线程要过 50s 才会超时退出,然后其他线程才有可能继续执行。对于在线服务来说,这个等待时间往往是无法接受的。

但是,我们又不可能直接把这个时间设置成一个很小的值,比如 1s。这样当出现死锁的时候,确实很快就可以解开,但如果不是死锁,而是简单的锁等待呢?所以,超时时间设置太短的话,会出现很多误伤。

所以,正常情况下我们还是要采用第二种策略,即:主动死锁检测,而且 innodb_deadlock_detect 的默认值本身就是 on。主动死锁检测在发生死锁的时候,是能够快速发现并进行处理的,但是它也是有额外负担的。

你可以想象一下这个过程:每当一个事务被锁的时候,就要看看它所依赖的线程有没有被别人锁住,如此循环,最后判断是否出现了循环等待,也就是死锁。

每个新来的被堵住的线程,都要判断会不会由于自己的加入导致了死锁,这是一个时间复杂度是 O(n) 的操作。假设有 1000 个并发线程要同时更新同一行,那么死锁检测操作就是 100 万这个量级的。虽然最终检测的结果是没有死锁,但是这期间要消耗大量的 CPU 资源。因此,你就会看到 CPU 利用率很高,但是每秒却执行不了几个事务。

根据上面的分析,我们来讨论一下,怎么解决由这种热点行更新导致的性能问题呢? 问题的症结在于,死锁检测要耗费大量的 CPU 资源。

一种头痛医头的方法,就是如果你能确保这个业务一定不会出现死锁,可以临时把死锁检测关掉。 但是这种操作本身带有一定的风险,因为业务设计的时候一般不会把死锁当做一个严重错误,毕竟出现死锁了,就回滚,然后通过业务重试一般就没问题了,这是业务无损的。而关掉死锁检测意味着可能会出现大量的超时,这是业务有损的。

另一个思路是控制并发度。 根据上面的分析,你会发现如果并发能够控制住,比如同一行同时最多只有 10 个线程在更新,那么死锁检测的成本很低,就不会出现这个问题。一个直接的想法就是,在客户端做并发控制。但是,你会很快发现这个方法不太可行,因为客户端很多。我见过一个应用,有 600 个客户端,这样即使每个客户端控制到只有 5 个并发线程,汇总到数据库服务端以后,峰值并发数也可能要达到 3000。

因此,这个并发控制要做在数据库服务端。如果你有中间件,可以考虑在中间件实现;如果你的团队有能修改 MySQL 源码的人,也可以做在 MySQL 里面。基本思路就是,对于相同行的更新,在进入引擎之前排队。这样在 InnoDB 内部就不会有大量的死锁检测工作了。

思考题

最后,我给你留下一个问题吧。如果你要删除一个表里面的前 10000 行数据,有以下三种方法可以做到:

  • 第一种,直接执行 delete from T limit 10000;
  • 第二种,在一个连接中循环执行 20 次 delete from T limit 500;
  • 第三种,在 20 个连接中同时执行 delete from T limit 500。

你会选择哪一种方法呢?为什么呢?

答案:
第二种方式是相对较好的。第一种方式(即:直接执行 delete from T limit 10000)里面,单个语句占用时间长,锁的时间也比较长;而且大事务还会导致主从延迟。第三种方式(即:在 20 个连接中同时执行 delete from T limit 500),会人为造成锁冲突。

事务到底是隔离还是不隔离的

我在第 3 篇文章和你讲事务隔离级别的时候提到过,如果是可重复读隔离级别 ,事务 T 启动的时候会创建一个视图 read-view,之后事务 T 执行期间,即使有其他事务修改了数据,事务 T 看到的仍然跟在启动时看到的一样。也就是说,一个在可重复读隔离级别下执行的事务,好像与世无争,不受外界影响。

但是,我在上一篇文章中,和你分享行锁的时候又提到,一个事务要更新一行,如果刚好有另外一个事务拥有这一行的行锁,它又不能这么超然了,会被锁住,进入等待状态。问题是,既然进入了等待状态,那么等到这个事务自己获取到行锁要更新数据的时候,它读到的值又是什么呢?

举一个例子吧。下面是一个只有两行的表的初始化语句。

mysql> CREATE TABLE `t` (
  `id` int(11) NOT NULL,
  `k` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB;
insert into t(id, k) values(1,1),(2,2);

MySQL实战_第23张图片
这里,我们需要注意的是事务的启动时机。

begin/start transaction 命令并不是一个事务的起点,在执行到它们之后的第一个操作 InnoDB 表的语句,事务才真正启动。如果你想要马上启动一个事务,可以使用 start transaction with consistent snapshot 这个命令。

第一种启动方式,一致性视图是在执行第一个快照读语句时创建的;第二种启动方式,一致性视图是在执行 start transaction with
consistent snapshot 时创建的。

还需要注意的是,在整个专栏里面,我们的例子中如果没有特别说明,都是默认 autocommit=1。

在这个例子中,事务 C 没有显式地使用 begin/commit,表示这个 update 语句本身就是一个事务,语句完成的时候会自动提交。事务 B 在更新了行之后查询 ; 事务 A 在一个只读事务中查询,并且时间顺序上是在事务 B 的查询之后。

这时,如果我告诉你事务 B 查到的 k 的值是 3,而事务 A 查到的 k 的值是 1,你是不是感觉有点晕呢?

在 MySQL 里,有两个“视图”的概念:

  • 一个是 view。它是一个用查询语句定义的虚拟表,在调用的时候执行查询语句并生成结果。创建视图的语法是 create view … ,而它的查询方法与表一样。
  • 另一个是 InnoDB 在实现 MVCC 时用到的一致性读视图,即 consistent read view,用于支持 RC(Read Committed,读提交)和 RR(Repeatable Read,可重复读)隔离级别的实现。

它没有物理结构,作用是事务执行期间用来定义“我能看到什么数据”。

在第 3 篇文章《事务隔离:为什么你改了我还看不见?》中,我跟你解释过一遍 MVCC 的实现逻辑。今天为了说明查询和更新的区别,我换一个方式来说明,把 read view 拆开。你可以结合这两篇文章的说明来更深一步地理解 MVCC。
具体关于MVCC可以结合第三章的内容看这篇百科的产品简介部分,还是挺清晰的
https://baike.baidu.com/item/MVCC

“快照”在 MVCC 里是怎么工作的?

在可重复读隔离级别下,事务在启动的时候就“拍了个快照”。注意,这个快照是基于整库的。

这时,你会说这看上去不太现实啊。如果一个库有 100G,那么我启动一个事务,MySQL 就要拷贝 100G 的数据出来,这个过程得多慢啊。可是,我平时的事务执行起来很快啊。实际上,我们并不需要拷贝出这 100G 的数据。我们先来看看这个快照是怎么实现的。

InnoDB 里面每个事务有一个唯一的事务 ID,叫作 transaction id。它是在事务开始的时候向 InnoDB 的事务系统申请的,是按申请顺序严格递增的。

而每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把 transaction id 赋值给这个数据版本的事务 ID,记为 row trx_id。同时,旧的数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。

也就是说,数据表中的一行记录,其实可能有多个版本 (row),每个版本有自己的 row trx_id。

如图 2 所示,就是一个记录被多个事务连续更新后的状态。

MySQL实战_第24张图片
图中虚线框里是同一行数据的 4 个版本,当前最新版本是 V4,k 的值是 22,它是被 transaction id 为 25 的事务更新的,因此它的 row trx_id 也是 25。

你可能会问,前面的文章不是说,语句更新会生成 undo log(回滚日志)吗?那么,undo log 在哪呢?

实际上,图 2 中的三个虚线箭头,就是 undo log;而 V1、V2、V3 并不是物理上真实存在的,而是每次需要的时候根据当前版本和 undo log 计算出来的。比如,需要 V2 的时候,就是通过 V4 依次执行 U3、U2 算出来。

明白了多版本和 row trx_id 的概念后,我们再来想一下,InnoDB 是怎么定义那个“100G”的快照的。

按照可重复读的定义,一个事务启动的时候,能够看到所有已经提交的事务结果。但是之后,这个事务执行期间,其他事务的更新对它不可见。因此,一个事务只需要在启动的时候声明说,“以我启动的时刻为准,如果一个数据版本是在我启动之前生成的,就认;如果是我启动以后才生成的,我就不认,我必须要找到它的上一个版本”。

当然,如果“上一个版本”也不可见,那就得继续往前找。还有,如果是这个事务自己更新的数据,它自己还是要认的。

在实现上, InnoDB 为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务 ID。“活跃”指的就是,启动了但还没提交。

数组里面事务 ID 的最小值记为低水位,当前系统里面已经创建过的事务 ID 的最大值加 1 记为高水位。

数组里面事务 ID 的最小值记为低水位,当前系统里面已经创建过的事务 ID 的最大值加 1 记为高水位。

这个视图数组和高水位,就组成了当前事务的一致性视图(read-view)。

而数据版本的可见性规则,就是基于数据的 row trx_id 和这个一致性视图的对比结果得到的。(看到这里我被innoDB的设计者所折服,这个设计太巧妙了)

这个视图数组把所有的 row trx_id 分成了几种不同的情况。

MySQL实战_第25张图片
这样,对于当前事务的启动瞬间来说,一个数据版本的 row trx_id,有以下几种可能:

  1. 如果落在绿色部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的;

  2. 如果落在红色部分,表示这个版本是由将来启动的事务生成的,是肯定不可见的; 如果落在黄色部分,那就包括两种情况

    a. 若 row trx_id 在数组中,表示这个版本是由还没提交的事务生成的,不可见;
    b. 若 row trx_id 不在数组中,表示这个版本是已经提交了的事务生成的,可见。

比如,对于图 2 中的数据来说,如果有一个事务,它的低水位是 18,那么当它访问这一行数据时,就会从 V4 通过 U3 计算出 V3,所以在它看来,这一行的值是 11。

你看,有了这个声明后,系统里面随后发生的更新,是不是就跟这个事务看到的内容无关了呢?因为之后的更新,生成的版本一定属于上面的 2 或者 3(a) 的情况,而对它来说,这些新的数据版本是不存在的,所以这个事务的快照,就是“静态”的了。

所以你现在知道了,InnoDB 利用了“所有数据都有多个版本”的这个特性,实现了“秒级创建快照”的能力。 (根本就在于回滚日志和每个事务的数组)

接下来,我们继续看一下图 1 中的三个事务,分析下事务 A 的语句返回的结果,为什么是 k=1。

  1. 这里,我们不妨做如下假设:事务 A 开始前,系统里面只有一个活跃事务 ID 是 99;
  2. 事务 A、B、C 的版本号分别是100、101、102,且当前系统里只有这四个事务;
  3. 三个事务开始前,(1,1)这一行数据的 row trx_id 是 90。

这样,事务 A 的视图数组就是[99,100], 事务 B 的视图数组是[99,100,101], 事务 C 的视图数组是[99,100,101,102]。

为了简化分析,我先把其他干扰语句去掉,只画出跟事务 A 查询逻辑有关的操作:

MySQL实战_第26张图片
从图中可以看到,第一个有效更新是事务 C,把数据从 (1,1) 改成了 (1,2)。这时候,这个数据的最新版本的 row trx_id 是 102,而 90 这个版本已经成为了历史版本。

第二个有效更新是事务 B,把数据从 (1,2) 改成了 (1,3)。这时候,这个数据的最新版本(即 row trx_id)是 101,而 102 又成为了历史版本。

你可能注意到了,在事务 A 查询的时候,其实事务 B 还没有提交,但是它生成的 (1,3) 这个版本已经变成当前版本了。但这个版本对事务 A 必须是不可见的,否则就变成脏读了。

好,现在事务 A 要来读数据了,它的视图数组是[99,100]。当然了,读数据都是从当前版本读起的。所以,事务 A 查询语句的读数据流程是这样的:

  • 找到 (1,3) 的时候,判断出 row trx_id=101,比高水位大,处于红色区域,不可见;
  • 接着,找到上一个历史版本,一看 row trx_id=102,比高水位大,处于红色区域,不可见;
  • 再往前找,终于找到了(1,1),它的 row trx_id=90,比低水位小,处于绿色区域,可见。

这样执行下来,虽然期间这一行数据被修改过,但是事务 A 不论在什么时候查询,看到这行数据的结果都是一致的,所以我们称之为一致性读。

这个判断规则是从代码逻辑直接转译过来的,但是正如你所见,用于人肉分析可见性很麻烦。

所以,我来给你翻译一下。一个数据版本,对于一个事务视图来说,除了自己的更新总是可见以外,有三种情况

  • 版本未提交,不可见;
  • 版本已提交,但是是在视图创建后提交的,不可见;
  • 版本已提交,而且是在视图创建前提交的,可见。

现在,我们用这个规则来判断图 4 中的查询结果,事务 A 的查询语句的视图数组是在事务 A 启动的时候生成的,这时候:

  • (1,3) 还没提交,属于情况 1,不可见;
  • (1,2) 虽然提交了,但是是在视图数组创建之后提交的,属于情况 2,不可见;
  • (1,1) 是在视图数组创建之前提交的,可见。

你看,去掉数字对比后,只用时间先后顺序来判断,分析起来是不是轻松多了。所以,后面我们就都用这个规则来分析。

更新逻辑

细心的同学可能有疑问了:事务 B 的 update 语句,如果按照一致性读,好像结果不对哦?

你看图 5 中,事务 B 的视图数组是先生成的,之后事务 C 才提交,不是应该看不见 (1,2) 吗,怎么能算出 (1,3) 来?

MySQL实战_第27张图片

是的,如果事务 B 在更新之前查询一次数据,这个查询返回的 k 的值确实是 1。

但是,当它要去更新数据的时候,就不能再在历史版本上更新了,否则事务 C 的更新就丢失了。因此,事务 B 此时的 set k=k+1 是在(1,2)的基础上进行的操作。

所以,这里就用到了这样一条规则:更新数据都是先读后写的,而这个读,只能读当前的值,称为“当前读”(current read)。

因此,在更新的时候,当前读拿到的数据是 (1,2),更新后生成了新版本的数据 (1,3),这个新版本的 row trx_id 是 101。

所以,在执行事务 B 查询语句的时候,一看自己的版本号是 101,最新数据的版本号也是 101,是自己的更新,可以直接使用,所以查询得到的 k 的值是 3。

这里我们提到了一个概念,叫作当前读。其实,除了 update 语句外,select 语句如果加锁,也是当前读。

所以,如果把事务 A 的查询语句 select * from t where id=1 修改一下,加上 lock in share mode 或 for update,也都可以读到版本号是 101 (也就是B自己所在事务发起的操作)的数据,返回的 k 的值是 3。下面这两个 select 语句,就是分别加了读锁(S 锁,共享锁)和写锁(X 锁,排他锁)。

mysql> select k from t where id=1 lock in share mode;
mysql> select k from t where id=1 for update;

再往前一步,假设事务 C 不是马上提交的,而是变成了下面的事务 C’,会怎么样呢?

MySQL实战_第28张图片

事务 C’的不同是,更新后并没有马上提交,在它提交前,事务 B 的更新语句先发起了。前面说过了,虽然事务 C’还没提交,但是 (1,2) 这个版本也已经生成了,并且是当前的最新版本。那么,事务 B 的更新语句会怎么处理呢?

这时候,我们在上一篇文章中提到的“两阶段锁协议”就要上场了。事务 C’没提交,也就是说 (1,2) 这个版本上的写锁还没释放。而事务 B 是当前读,必须要读最新版本,而且必须加锁,因此就被锁住了,必须等到事务 C’释放这个锁,才能继续它的当前读。

MySQL实战_第29张图片
这里,我们把一致性读、当前读和行锁就串起来了。

现在,我们再回到文章开头的问题:事务的可重复读的能力是怎么实现的?

可重复读的核心就是一致性读(consistent read);而事务更新数据的时候,只能用当前读。如果当前的记录的行锁被其他事务占用的话,就需要进入锁等待。

  • 在可重复读隔离级别下,只需要在事务开始的时候创建一致性视图,之后事务里的其他查询都共用这个一致性视图;
  • 在读提交隔离级别下,每一个语句执行前都会重新算出一个新的视图。

那么,我们再看一下,在读提交隔离级别下,事务 A 和事务 B 的查询语句查到的 k,分别应该是多少呢?

这里需要说明一下,“start transaction with consistent snapshot; ”的意思是从这个语句开始,创建一个持续整个事务的一致性快照。所以,在读提交隔离级别下,这个用法就没意义了,等效于普通的 start transaction。

下面是读提交时的状态图,可以看到这两个查询语句的创建视图数组的时机发生了变化,就是图中的 read view 框。(注意:这里,我们用的还是事务 C 的逻辑直接提交,而不是事务 C’)

MySQL实战_第30张图片
这时,事务 A 的查询语句的视图数组是在执行这个语句的时候创建的,时序上 (1,2)、(1,3) 的生成时间都在创建这个视图数组的时刻之前。但是,在这个时刻:

  • (1,3) 还没提交,属于情况 1,不可见;
  • (1,2) 提交了,属于情况 3,可见。

所以,这时候事务 A 查询语句返回的是 k=2。
显然地,事务 B 查询结果 k=3。

小结以及思考题

InnoDB 的行数据有多个版本,每个数据版本有自己的 row trx_id,每个事务或者语句有自己的一致性视图。普通查询语句是一致性读,一致性读会根据 row trx_id 和一致性视图确定数据版本的可见性。

  • 对于可重复读,查询只承认在事务启动前就已经提交完成的数据;
  • 对于读提交,查询只承认在语句启动前就已经提交完成的数据;

而当前读,总是读取已经提交完成的最新版本。你也可以想一下,为什么表结构不支持“可重复读”?这是因为表结构没有对应的行数据,也没有 row trx_id,因此只能遵循当前读的逻辑。当然,MySQL 8.0 已经可以把表结构放在 InnoDB 字典里了,也许以后会支持表结构的可重复读。

又到思考题时间了。我用下面的表结构和初始化语句作为试验环境,事务隔离级别是可重复读。现在,我要把所有“字段 c 和 id 值相等的行”的 c 值清零,但是却发现了一个“诡异”的、改不掉的情况。请你构造出这种情况,并说明其原理。

mysql> CREATE TABLE `t` (
  `id` int(11) NOT NULL,
  `c` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB;
insert into t(id, c) values(1,1),(2,2),(3,3),(4,4);

MySQL实战_第31张图片

复现出来以后,请你再思考一下,在实际的业务开发中有没有可能碰到这种情况?你的应用代码会不会掉进这个“坑”里,你又是怎么解决的呢?

如何构造一个“数据无法修改”的场景?
MySQL实战_第32张图片
这样,session A 看到的就是我截图的效果了。

实践篇

普通索引和唯一索引

在基础篇已经讲过唯一索引和普通索引的区别了,今天就来谈谈在不同的业务场景下,应该用唯一索引还是普通索引。

假设你在维护一个市民系统,每个人都有一个唯一的身份证号,而且业务代码已经保证了不会写入两个重复的身份证号。如果市民系统需要按照身份证号查姓名,就会执行类似这样的 SQL 语句:

select name from CUser where id_card = 'xxxxxxxyyyyyyzzzzz';

所以,你一定会考虑在 id_card 字段上建索引。由于身份证号字段比较大,我不建议你把身份证号当做主键(如果用做主键,其他的字段的查询也要花费比较大的消耗),那么现在你有两个选择,要么给 id_card 字段创建唯一索引,要么创建一个普通索引。如果业务代码已经保证了不会写入重复的身份证号,那么这两个选择逻辑上都是正确的。

现在我要问你的是,从性能的角度考虑,你选择唯一索引还是普通索引呢?选择的依据是什么呢?

MySQL实战_第33张图片
假设字段k就是身份证字段,保证字段k上的值不重复。

B树

由于数据库中大量用到了B+树,但是专栏并没有解释说明是B树,B+树,所以这里补充一下这方面的知识点,参考了这两篇文章:

漫画:什么是B-树

漫画:什么是B+树

由于B+树和B树类似,所以先来看看B树

数据库索引之所以要使用树结构进行存储,是因为树的查询效率高,可以保持有序(这点在前文有讲述过),而且虽然二叉树的查询效率高,能达到O(logN),但是在实际中,却不可能使用二叉树——当数据库数据量比较大的时候,索引可能有几个G甚至更多,当使用索引查询的时候,显然不可能将所有索引都加载到内存中,能做到只有逐一加载每一个磁盘页,这里的磁盘页对应着索引树的节点。

MySQL实战_第34张图片
由于每个索引都处于磁盘页中的一个数据点,因此完成一个如图所示,树的高度是4,查询的值是10,的任务,总共需要4次磁盘IO操作,因此在最坏情况下,磁盘IO次数等于索引树的高度。
MySQL实战_第35张图片
既然如此,就需要把原本瘦高的树结构变得矮胖,这就是B-树的特征之一。

B树是一种多路平衡查找树,它的每一个节点最多包含k个孩子,k被称为B树的阶,k的大小取决于磁盘页的大小。

一个m阶的B-树有着以下的特点:

1.根结点至少有两个子女;
2.每个中间节点都包含k-1个元素和k个孩子,其中 m/2 <=k<=m;
3.每个叶子节点都包含k-1个元素,其中 m/2 <= k <=m
4.所有的叶子节点都位于同一层
5.每个节点中的元素从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域划分

第二点和第五点可以合并起来一起看,至于第三点,个人没有看懂作者想表达什么。

所以对于刚才的1 - 15的节点,使用B树构建之后的样子如下图所示:

MySQL实战_第36张图片
对于第五点,2和6将孩子的值域进行了切分:
MySQL实战_第37张图片
对于一条单独的查找工作,查找一个元素5,最后一个查找状态如下图所示,B树的查找次数并没有比二叉平衡查找树少,尤其当单一节点的元素数量很多的时候。
MySQL实战_第38张图片
可是上面这个B树可以再进行压缩操作,可以变成更多条分支,IO操作次数就会降低,就可以提高性能。相比之下,节点内部的元素多一些没有关系,只要不超过磁盘页的大小即可。

B-树的插入和删除比较复杂,主要时刻需要考察是否符合上面五个规范,需要进行自平衡调整。由于B树主要应用于文件系统以及部分数据库索引,比如非关系型数据库mongodb ,而大部分关系型数据库比如MySQL则使用B+树,这里重点看看B+树的。

B+树

B+树

B+树是基于B-树的一种变体,有着比B-树更高的查询性能,B+树有着B-树的部分特征:

1.有k个子树的中间节点包含有k个元素(B树中是k-1个元素),每个元素不保存数据,只用来索引,所有数据都保存在叶子节点。

2.所有的叶子结点中包含了全部元素的信息,及指向含这些元素记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。

3.所有的中间节点元素都同时存在于子节点,在子节点元素中是最大(或最小)元素。

树的模样大概如下图所示:
MySQL实战_第39张图片
其中8是根节点的左孩子树的最大值,15是右孩子树的最大值,因此根节点的最大值等于整个树的最大值。无论后续插入或者删除多少元素,都要保持最大的元素始终在根节点中。每个叶子节点都带有指向下一个节点的指针,形成了一个有序链表。
MySQL实战_第40张图片

卫星数据

所谓卫星数据,指的是索引元素所指向的数据记录,比如数据库中的某一行,在B树种,无论中间节点还是叶子节点,都带有卫星数据,如下图所示:
MySQL实战_第41张图片

在B+树中,只有叶子带有卫星数据,其余中间节点仅仅是索引,没有任何数据关联。如下图所示:
MySQL实战_第42张图片
(需要补充的是,在数据库的聚集索引(Clustered Index)中,叶子节点直接包含卫星数据。在非聚集索引(NonClustered Index)中,叶子节点带有指向卫星数据的指针。)

使用B+树进行查询元素最后一个步骤如下图所示:
MySQL实战_第43张图片
不过和B树相比,有以下几点好处:

1.B+树的中间节点没有卫星数据,所以同样大小的磁盘页可以容纳更多的节点元素,所以树结构可以达到更高的M阶,这就意味着,B+树的结构可以比B树更加矮胖,因此查询IO次数更加少。
2.B树只要找到匹配的元素就可以终结,B树的查询最终必须查找到叶子节点,查询性能是稳定的;
3.范围查找上,B-树只能依靠中序遍历;B+树的查询,只需要在找到范围开始元素之后,在链表上做遍历即可。

综合起来

  1. IO次数更加少
  2. 查询性能稳定
  3. 范围查询简便

查询过程

假设,执行查询的语句是 select id from T where k=5。这个查询语句在索引树上查找的过程,先是通过 B+ 树从树根开始,按层搜索到叶子节点,也就是图中右下角的这个数据页,然后可以认为数据页内部通过二分法来定位记录。

对于普通索引来说,查找到满足条件的第一个记录 (5,500) 后,需要查找下一个记录,直到碰到第一个不满足 k=5 条件的记录。对于唯一索引来说,由于索引定义了唯一性,查找到第一个满足条件的记录后,就会停止继续检索。

那么,这个不同带来的性能差距会有多少呢?答案是,微乎其微。

你知道的,InnoDB 的数据是按数据页为单位来读写的。也就是说,当需要读一条记录的时候,并不是将这个记录本身从磁盘读出来,而是以页为单位,将其整体读入内存。在 InnoDB 中,每个数据页的大小默认是 16KB。因为引擎是按页读写的,所以说,当找到 k=5 的记录的时候,它所在的数据页就都在内存里了。那么,对于普通索引来说,要多做的那一次“查找和判断下一条记录”的操作,就只需要一次指针寻找和一次计算。当然,如果 k=5 这个记录刚好是这个数据页的最后一个记录,那么要取下一个记录,必须读取下一个数据页,这个操作会稍微复杂一些。但是,我们之前计算过,对于整型字段,一个数据页可以放近千个 key,因此出现这种情况的概率会很低。所以,我们计算平均性能差异时,仍可以认为这个操作成本对于现在的 CPU 来说可以忽略不计。

更新过程

首先,需要介绍一下change buffer 这个结构:

当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话,在不影响数据一致性的前提下,InnoDB 会将这些更新操作缓存在 change buffer 中,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行 change buffer 中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。

需要说明的是,虽然名字叫作 change buffer,实际上它是可以持久化的数据。也就是说,change buffer 在内存中有拷贝,也会被写入到磁盘上。

将 change buffer 中的操作应用到原数据页,得到最新结果的过程称为 merge。除了访问这个数据页会触发 merge 外,系统有后台线程会定期 merge。在数据库正常关闭(shutdown)的过程中,也会执行 merge 操作。

显然,如果能够将更新操作先记录在 change buffer,减少读磁盘,语句的执行速度会得到明显的提升。而且,数据读入内存是需要占用 buffer pool 的,所以这种方式还能够避免占用内存,提高内存利用率。

那么,什么条件下可以使用 change buffer 呢?

对于唯一索引来说 ,所有的更新操作都要先判断这个操作是否违反唯一性约束。比如,要插入 (4,400) 这个记录,就要先判断现在表中是否已经存在 k=4 的记录,而这必须要将数据页读入内存才能判断。如果都已经读入到内存了,那直接更新内存会更快,就没必要使用 change buffer 了。

因此,唯一索引的更新就不能使用 change buffer,实际上也只有普通索引可以使用。

By the way, change buffer 用的是 buffer pool 里的内存,因此不能无限增大。change buffer 的大小,可以通过参数 innodb_change_buffer_max_size 来动态设置。这个参数设置为 50 的时候,表示 change buffer 的大小最多只能占用 buffer pool 的 50%。

现在,你已经理解了 change buffer 的机制,那么我们再一起来看看如果要在这张表中插入一个新记录 (4,400) 的话,InnoDB 的处理流程是怎样的。

第一种情况是,这个记录要更新的目标页在内存中。 这时,InnoDB 的处理流程如下:

  • 对于唯一索引来说,找到 3 和 5 之间的位置,判断到没有冲突,插入这个值,语句执行结束;
  • 对于普通索引来说,找到 3 和 5 之间的位置,插入这个值,语句执行结束。

这样看来,普通索引和唯一索引对更新语句性能影响的差别,只是一个判断,只会耗费微小的 CPU 时间。但,这不是我们关注的重点。

第二种情况是, 这个记录要更新的目标页不在内存中。这时,InnoDB 的处理流程如下:

  • 于唯一索引来说,需要将数据页读入内存,判断到没有冲突,插入这个值,语句执行结束;
  • 对于普通索引来说,则是将更新记录在 change buffer,语句执行就结束了。

将数据从磁盘读入内存涉及随机 IO 的访问,是数据库里面成本最高的操作之一。change buffer 因为减少了随机磁盘访问,所以对更新性能的提升是会很明显的。

作者:之前我就碰到过一件事儿,有个 DBA 的同学跟我反馈说,他负责的某个业务的库内存命中率突然从 99% 降低到了 75%,整个系统处于阻塞状态,更新语句全部堵住。而探究其原因后,我发现这个业务有大量插入数据的操作,而他在前一天把其中的某个普通索引改成了唯一索引。

小结一下:之所以唯一索引和普通索引有这点区别就是,唯一索引必须保证索引是唯一的,所以必须从磁盘中拿到当前数据,然后进行判断,才能做相应的更新。

change buffer 的使用场景

通过上面的分析,你已经清楚了使用 change buffer 对更新过程的加速作用,也清楚了 change buffer 只限于用在普通索引的场景下,而不适用于唯一索引。那么,现在有一个问题就是:普通索引的所有场景,使用 change buffer 都可以起到加速作用吗?

因为 merge 的时候是真正进行数据更新的时刻,而 change buffer 的主要目的就是将记录的变更动作缓存下来,所以在一个数据页做 merge 之前,change buffer 记录的变更越多(也就是这个页面上要更新的次数越多),收益就越大。

因此,对于写多读少的业务来说,页面在写完以后马上被访问到的概率比较小,此时 change buffer 的使用效果最好。这种业务模型常见的就是账单类、日志类的系统。

反过来,假设一个业务的更新模式是写入之后马上会做查询,那么即使满足了条件,将更新先记录在 change buffer,但之后由于马上要访问这个数据页,会立即触发 merge 过程。 这样随机访问 IO 的次数不会减少,反而增加了 change buffer 的维护代价。所以,对于这种业务模式来说,change buffer 反而起到了副作用。

索引选择和实践

回到我们文章开头的问题,普通索引和唯一索引应该怎么选择。其实,这两类索引在查询能力上是没差别的,主要考虑的是对更新性能的影响。所以,我建议你尽量选择普通索引。

如果所有的更新后面,都马上伴随着对这个记录的查询,那么你应该关闭 change buffer。而在其他情况下,change buffer 都能提升更新性能。

在实际使用中,你会发现,普通索引和 change buffer 的配合使用,对于数据量大的表的更新优化还是很明显的。

特别地,在使用机械硬盘时,change buffer 这个机制的收效是非常显著的。所以,当你有一个类似“历史数据”的库,并且出于成本考虑用的是机械硬盘时,那你应该特别关注这些表里的索引,尽量使用普通索引,然后把 change buffer 尽量开大,以确保这个“历史数据”表的数据写入速度。

change buffer 和 redo log

理解了 change buffer 的原理,你可能会联想到我在前面文章中和你介绍过的 redo log 和 WAL。
在前面文章的评论中,我发现有同学混淆了 redo log 和 change buffer。WAL 提升性能的核心机制,也的确是尽量减少随机读写,这两个概念确实容易混淆。所以,这里我把它们放到了同一个流程里来说明,便于你区分这两个概念。(确实一开始接触change buffer我以为似曾相识)

现在,我们要在表上执行这个插入语句

mysql> insert into t(id,k) values(id1,k1),(id2,k2);

这里,我们假设当前 k 索引树的状态,查找到位置后,k1 所在的数据页在内存 (InnoDB buffer pool) 中,k2 所在的数据页不在内存中。如图 2 所示是带 change buffer 的更新状态图。

MySQL实战_第44张图片
分析这条更新语句,你会发现它涉及了四个部分:内存、redo log(ib_log_fileX)、 数据表空间(t.ibd)、系统表空间(ibdata1)。

这条更新语句做了如下的操作(按照图中的数字顺序):

  1. Page 1 在内存中,直接更新内存;
  2. Page 2 没有在内存中,就在内存的 change buffer 区域,记录下“我要往 Page 2 插入一行”这个信息
  3. 将上述两个动作记入 redo log 中(图中 3 和 4)

做完上面这些之后,事务就完成了,所以,你会看到,执行这条更新语句的成本很低,就是写了两处内存,然后写了一处磁盘(两次操作合在一起写了一次磁盘),而且还是顺序写的。同时,图中的两个虚线箭头,是后台操作,不影响更新的响应时间。

比如,我们现在要执行 select * from t where k in (k1, k2)。这里,我画了这两个读请求的流程图。

如果读语句发生在更新语句后不久,内存中的数据都还在,那么此时的这两个读操作就与系统表空间(ibdata1)和 redo log(ib_log_fileX)无关了。所以,我在图中就没画出这两部分。

  1. 读 Page 1 的时候,直接从内存返回。有几位同学在前面文章的评论中问到,WAL 之后如果读数据,是不是一定要读盘,是不是一定要从 redo log 里面把数据更新以后才可以返回?其实是不用的。你可以看一下图 3 的这个状态,虽然磁盘上还是之前的数据,但是这里直接从内存返回结果,结果是正确的。
  2. 要读 Page 2 的时候,需要把 Page 2 从磁盘读入内存中,然后应用 change buffer 里面的操作日志,生成一个正确的版本并返回结果。

可以看到,直到需要读 Page 2 的时候,这个数据页才会被读入内存。

所以,如果要简单地对比这两个机制在提升更新性能上的收益的话,redo log 主要节省的是随机写磁盘的 IO 消耗(转成顺序写),而 change buffer 主要节省的则是随机读磁盘的 IO 消耗。

但我觉得change buffer在更改数据的时候通过“消除”了两者的内存和磁盘之间的隔阂,也加速了写入这个过程的速度,不同的是,redo log 对于所有的操作都会做一个记录,而 change buffer是对内存不命中的数据进行额外的记录。因此可以看成先写change buffer,然后把changebuffer部分的内容连同其他写操作,都一并写入 redo log中。

思考题

通过图 2 你可以看到,change buffer 一开始是写内存的,那么如果这个时候机器掉电重启,会不会导致 change buffer 丢失呢? change buffer 丢失可不是小事儿,再从磁盘读入数据可就没有了 merge 过程,就等于是数据丢失了。会不会出现这种情况呢?

我百度了下,redo log包括两部分:一是内存中的日志缓冲(redo log buffer),该部分日志是易失性的;二是磁盘上的重做日志文件(redo log file),该部分日志是持久的。所以redo log可能是存在磁盘上的。因此由于changebuffer的操作记录已经记录在redo log里面了,所以在change buffer崩溃之后,也可以通过redo log找回来。

BTW,merge 的执行流程是这样的:

  1. 从磁盘读入数据页到内存(老版本的数据页);
  2. 从 change buffer 里找出这个数据页的 change buffer 记录 (可能有多个),依次应用,得到新版数据页;
  3. 写 redo log。这个 redo log 包含了数据的变更和 change buffer 的变更。

到这里 merge 过程就结束了。这时候,数据页和内存中 change buffer 对应的磁盘位置都还没有修改,属于脏页,之后各自刷回自己的物理数据,就是另外一个过程了。

也就是说merge过程 并没有写入到磁盘中。

MySQL 为什么会有时候会选错索引

前面我们介绍过索引,你已经知道了在 MySQL 中一张表其实是可以支持多个索引的。但是,你写 SQL 语句的时候,并没有主动指定使用哪个索引。也就是说,使用哪个索引是由 MySQL 来确定的。不知道你有没有碰到过这种情况,一条本来可以执行得很快的语句,却由于 MySQL 选错了索引,而导致执行速度变得很慢?我们一起来看一个例子吧。我们先建一个简单的表,表里有 a、b 两个字段,并分别建上索引:

CREATE TABLE `t` (
  `id` int(11) NOT NULL,
  `a` int(11) DEFAULT NULL,
  `b` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `a` (`a`),
  KEY `b` (`b`)
) ENGINE=InnoDB

然后,我们往表 t 中插入 10 万行记录,取值按整数递增,即:(1,1,1),(2,2,2),(3,3,3) 直到 (100000,100000,100000)。

delimiter ;;
create procedure idata()
begin
  declare i int;
  set i=1;
  while(i<=100000)do
    insert into t values(i, i, i);
    set i=i+1;
  end while;
end;;
delimiter ;
call idata();

接下来来分析一条MySQL语句

mysql> select * from t where a between 10000 and 20000;

使用explain 来显示这条语句的执行情况,可以看到确实是用索引a的
在这里插入图片描述
然后再执行如下的事务,
MySQL实战_第45张图片
这里,session A 的操作你已经很熟悉了,它就是开启了一个事务。随后,session B 把数据都删除后,又调用了 idata 这个存储过程,插入了 10 万行数据。这时候,session B 的查询语句 select * from t where a between 10000 and 20000 就不会再选择索引 a 了。我们可以通过慢查询日志(slow log)来查看一下具体的执行情况。

set long_query_time=0;
select * from t where a between 10000 and 20000; /*Q1*/
select * from t force index(a) where a between 10000 and 20000;/*Q2*/

代码中,最后一行的force index(a)表示让优化器强制使用索引a。

  • 第一句,是将慢查询日志的阈值设置为 0,表示这个线程接下来的语句都会被记录入慢查询日志中;
  • 第二句,Q1 是 session B 原来的查询;
  • 第三句,Q2 是加了 force index(a) 来和 session B 原来的查询语句执行情况对比。

MySQL实战_第46张图片
可以看到,Q1 扫描了 10 万行,显然是走了全表扫描,执行时间是 40 毫秒。Q2 扫描了 10001 行,执行了 21 毫秒。也就是说,我们在没有使用 force index 的时候,MySQL 用错了索引,导致了更长的执行时间。(0.000163 和 0.000151)

优化器的逻辑

在之前MySQL的架构中,有谈到选择索引是优化器的工作。

而优化器选择索引的目的,是找到一个最优的执行方案,并用最小的代价去执行语句。在数据库里面,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的 CPU 资源越少。当然,扫描行数并不是唯一的判断标准,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。我们这个简单的查询语句并没有涉及到临时表和排序,所以 MySQL 选错索引肯定是在判断扫描行数的时候出问题了。

那么,问题就是:扫描行数是怎么判断的?

MySQL 在真正开始执行语句之前,并不能精确地知道满足这个条件的记录有多少条,而只能根据统计信息来估算记录数。

这个统计信息就是索引的“区分度”。显然,一个索引上不同的值越多,这个索引的区分度就越好。而一个索引上不同的值的个数,我们称之为“基数”(cardinality)。也就是说,这个基数越大,索引的区分度越好。

我们可以使用 show index 方法,看到一个索引的基数。如图 4 所示,就是表 t 的 show index 的结果 。虽然这个表的每一行的三个字段值都是一样的,但是在统计信息中,这三个索引的基数值并不同,而且其实都不准确。

在这里插入图片描述

那么,MySQL 是怎样得到索引的基数的呢?这里,我给你简单介绍一下 MySQL 采样统计的方法。为什么要采样统计呢?因为把整张表取出来一行行统计,虽然可以得到精确的结果,但是代价太高了,所以只能选择“采样统计”。采样统计的时候,InnoDB 默认会选择 N 个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数。

而数据表是会持续更新的,索引统计信息也不会固定不变。所以,当变更的数据行数超过 1/M 的时候,会自动触发重新做一次索引统计。

在 MySQL 中,有两种存储索引统计的方式,可以通过设置参数 innodb_stats_persistent 的值来选择:
设置为 on 的时候,表示统计信息会持久化存储。这时,默认的 N 是 20,M 是 10。设置为 off 的时候,表示统计信息只存储在内存中。这时,默认的 N 是 8,M 是 16。

由于是采样统计,所以不管 N 是 20 还是 8,这个基数都是很容易不准的。但,这还不是全部

其实索引统计只是一个输入,对于一个具体的语句来说,优化器还要判断,执行这个语句本身要扫描多少行。

接下来,我们再一起看看优化器预估的,这两个语句的扫描行数是多少。

MySQL实战_第47张图片
rows 这个字段表示的是预计扫描行数。其中,Q1 的结果还是符合预期的,rows 的值是 104620;但是 Q2 的 rows 值是 37116,偏差就大了。而图 1 中我们用 explain 命令看到的 rows 是只有 10001 行,是这个偏差误导了优化器的判断。

优化器为什么放着扫描 37000 行的执行计划不用,却选择了扫描行数是 100000 的执行计划呢?

是因为,如果使用索引 a,每次从索引 a 上拿到一个值,都要回到主键索引上查出整行数据,这个代价优化器也要算进去的。而如果选择扫描 10 万行,是直接在主键索引上扫描的,没有额外的代价。优化器会估算这两个选择的代价,从结果看来,优化器认为直接扫描主键索引更快。当然,从执行时间看来,这个选择并不是最优的。

使用普通索引需要把回表的代价算进去,在图 1 执行 explain 的时候,也考虑了这个策略的代价 ,但图 1 的选择是对的。也就是说,这个策略并没有问题。

既然是统计信息不对,那就修正。analyze table t 命令,可以用来重新统计索引信息。我们来看一下执行效果。

.MySQL实战_第48张图片
这次使用的possible key 就是正确的了。

mysql> select * from t where (a between 1 and 1000)  and (b between 50000 and 100000) order by b limit 1;

从条件上看,这个查询没有符合条件的记录,因此会返回空集合。在开始执行这条语句之前,你可以先设想一下,如果你来选择索引,会选择哪一个呢?为了便于分析,我们先来看一下 a、b 这两个索引的结构图。

MySQL实战_第49张图片
如果使用索引 a 进行查询,那么就是扫描索引 a 的前 1000 个值,然后取到对应的 id,再到主键索引上去查出每一行,然后根据字段 b 来过滤。显然这样需要扫描 1000 行。

如果使用索引 b 进行查询,那么就是扫描索引 b 的最后 50001 个值,与上面的执行过程相同,也是需要回到主键索引上取值再判断,所以需要扫描 50001 行。

所以你一定会想,如果使用索引 a 的话,执行速度明显会快很多。那么,下面我们就来看看到底是不是这么一回事儿。图 8 是执行 explain 的结果。

在这里插入图片描述
可以看到,返回结果中 key 字段显示,这次优化器选择了索引 b,而 rows 字段显示需要扫描的行数是 50198。从这个结果中,你可以得到两个结论:扫描行数的估计值依然不准确;这个例子里 MySQL 又选错了索引。

索引选择异常和处理

我们来看看第二个例子。刚开始分析时,我们认为选择索引 a 会更好。现在,我们就来看看执行效果:
在这里插入图片描述
不过很多程序员不喜欢使用 force index,一来这么写不优美,二来如果索引改了名字,这个语句也得改,显得很麻烦。而且如果以后迁移到别的数据库的话,这个语法还可能会不兼容。但其实使用 force index 最主要的问题还是变更的及时性。因为选错索引的情况还是比较少出现的,所以开发的时候通常不会先写上 force index。而是等到线上出现问题的时候,你才会再去修改 SQL 语句、加上 force index。但是修改之后还要测试和发布,对于生产系统来说,这个过程不够敏捷。所以,数据库的问题最好还是在数据库内部来解决。那么,在数据库里面该怎样解决呢?

解决错误索引可以有三种方法:
1.向上面那样手动force index 指定索引
2.修改语句,引导MySQL使用我们期望的索引
3.删掉误用的索引(解决提出问题的人

思考题

前面我们在构造第一个例子的过程中,通过 session A 的配合,让 session B 删除数据后又重新插入了一遍数据,然后就发现 explain 结果中,rows 字段从 10001 变成 37000 多。而如果没有 session A 的配合,只是单独执行 delete from t 、call idata()、explain 这三句话,会看到 rows 字段其实还是 10000 左右。(其实这才是我最疑惑的地方)

(要检查一下隔离级别是不是 RR(Repeatable Read,可重复读),创建的表 t 是不是 InnoDB 引擎。)

主键上的数据也不能删,那没有使用 force index 的语句,使用 explain 命令看到的扫描行数为什么还是 100000 左右?是的,不过这个是主键,主键是直接按照表的行数来估计的。而表的行数,优化器直接用的是 show table status 的值。

MySQL实战_第50张图片

怎么给字符串字段加索引


最近在忙着手撸Spring Cloud的一个小项目,发布先。

你可能感兴趣的:(数据库,MySQL,数据库,MySQL)