定义:动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的。
过程:对于动态规划问题,我将拆解为如下五步曲。
解题范围:
1.背包问题
2.打家劫舍
3.股票问题
4.子序列问题
力扣题目链接(opens new window)
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。
示例 1:
示例 2:
思路:动规五部曲:
class Solution {
public:
int fib(int N) {
if (N <= 1) return N;
vector dp(N + 1);
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= N; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[N];
}
};
JAVA:
class Solution {
public int fib(int n) {
if (n < 2) return n;
int a = 0, b = 1, c = 0;
for (int i = 1; i < n; i++) {
c = a + b;
a = b;
b = c;
}
return c;
}
}
力扣题目链接(opens new window)
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
示例 2:
这不就是斐波那契数列。唯一的区别是,没有讨论dp[0]应该是什么,因为dp[0]在本题没有意义!
思路:动规五部曲:
力扣题目链接(opens new window)
旧题目描述:
数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。
每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。
请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。(这里指出了初始化)
示例 1:
示例 2:
思路:动规五部曲:
class Solution {
public:
int minCostClimbingStairs(vector& cost) {
vector dp(cost.size() + 1);
dp[0] = 0; // 默认第一步都是不花费体力的
dp[1] = 0;
for (int i = 2; i <= cost.size(); i++) {
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[cost.size()];
}
};
JAVA:
class Solution {
public int minCostClimbingStairs(int[] cost) {
int len = cost.length;
int[] dp = new int[len + 1];
// 从下标为 0 或下标为 1 的台阶开始,因此支付费用为0
dp[0] = 0;
dp[1] = 0;
// 计算到达每一层台阶的最小费用
for (int i = 2; i <= len; i++) {
dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[len];
}