力扣题目链接
给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。
(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)
示例 1:
示例 2:
示例 3:
思路:本题的解题思路并不难,只要发现前后两位相比不是单调递增的数字,就将高位数减1,后续位直接加9就可以了,在代码过程中,有两个细节需要注意:
1.遍历N时,选择从低位到高位遍历。
2.代码中需要flag记录 9 开始的位置,flag的初始值设置为N.size来避免不必要的换算。
class Solution {
public:
int monotoneIncreasingDigits(int N) {
string strNum = to_string(N);
// flag用来标记赋值9从哪里开始
// 设置为这个默认值,为了防止第二个for循环在flag没有被赋值的情况下执行
int flag = strNum.size();
for (int i = strNum.size() - 1; i > 0; i--) {
if (strNum[i - 1] > strNum[i] ) {
flag = i;
strNum[i - 1]--;
}
}
for (int i = flag; i < strNum.size(); i++) {
strNum[i] = '9';
}
return stoi(strNum);
}
};
JAVA:
class Solution {
public int monotoneIncreasingDigits(int n) {
String s = String.valueOf(n);
char[] chars = s.toCharArray();
int start = s.length();
for (int i = s.length() - 2; i >= 0; i--) {
if (chars[i] > chars[i + 1]) {
chars[i]--;
start = i+1;
}
}
for (int i = start; i < s.length(); i++) {
chars[i] = '9';
}
return Integer.parseInt(String.valueOf(chars));
}
}
力扣题目链接(opens new window)
给定一个二叉树,我们在树的节点上安装摄像头。
节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。
计算监控树的所有节点所需的最小摄像头数量。
示例 1:
示例 2:
思路:摄像头可以覆盖上中下三层,所以把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积。
局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!
注意:1.确定遍历顺序,由于需要的遍历顺序为由下到上,因此确定使用后序遍历
2.如何放置摄像头:
将节点的情况分为3种:
0.该节点无覆盖
1.本节点有摄像头
2.本节点有覆盖
将子节点的情况分为4种:
情况1:左右节点(孩子节点)都有覆盖------------此时父节点为情况0,无覆盖
情况2:左右节点至少有一个无覆盖的情况------此时父节点插入摄像头
情况3:左右节点至少有一个有摄像头--------此时父节点不需要插入摄像头
情况4:根节点的子节点有覆盖-----------此时需要为根节点单独增加一个摄像头
用递归方式遍历二叉树:注意三部曲,尤其是终止条件。
终止条件即NULL节点的处理,视为情况1处理,目的是为了将叶子节点视为无覆盖。
class Solution {
private:
int result;
int traversal(TreeNode* cur) {
// 空节点,该节点有覆盖
if (cur == NULL) return 2;
int left = traversal(cur->left); // 左
int right = traversal(cur->right); // 右
// 情况1
// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;
// 情况2
// left == 0 && right == 0 左右节点无覆盖
// left == 1 && right == 0 左节点有摄像头,右节点无覆盖
// left == 0 && right == 1 左节点有无覆盖,右节点摄像头
// left == 0 && right == 2 左节点无覆盖,右节点覆盖
// left == 2 && right == 0 左节点覆盖,右节点无覆盖
if (left == 0 || right == 0) {
result++;
return 1;
}
// 情况3
// left == 1 && right == 2 左节点有摄像头,右节点有覆盖
// left == 2 && right == 1 左节点有覆盖,右节点有摄像头
// left == 1 && right == 1 左右节点都有摄像头
// 其他情况前段代码均已覆盖
if (left == 1 || right == 1) return 2;
// 以上代码我没有使用else,主要是为了把各个分支条件展现出来,这样代码有助于读者理解
// 这个 return -1 逻辑不会走到这里。
return -1;
}
public:
int minCameraCover(TreeNode* root) {
result = 0;
// 情况4
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
};
JAVA:
class Solution {
int res=0;
public int minCameraCover(TreeNode root) {
// 对根节点的状态做检验,防止根节点是无覆盖状态 .
if(minCame(root)==0){
res++;
}
return res;
}
/**
节点的状态值:
0 表示无覆盖
1 表示 有摄像头
2 表示有覆盖
后序遍历,根据左右节点的情况,来判读 自己的状态
*/
public int minCame(TreeNode root){
if(root==null){
// 空节点默认为 有覆盖状态,避免在叶子节点上放摄像头
return 2;
}
int left=minCame(root.left);
int right=minCame(root.right);
// 如果左右节点都覆盖了的话, 那么本节点的状态就应该是无覆盖,没有摄像头
if(left==2&&right==2){
//(2,2)
return 0;
}else if(left==0||right==0){
// 左右节点都是无覆盖状态,那 根节点此时应该放一个摄像头
// (0,0) (0,1) (0,2) (1,0) (2,0)
// 状态值为 1 摄像头数 ++;
res++;
return 1;
}else{
// 左右节点的 状态为 (1,1) (1,2) (2,1) 也就是左右节点至少存在 1个摄像头,
// 那么本节点就是处于被覆盖状态
return 2;
}
}
}