操作ES只需要发送请求就可以,相对来说整合起来比较简单
spring-data-elasticsearch:transport-api.jar;
springboot 版本不同, transport-api.jar 不同,不能适配es 版本
7.x 已经不建议使用,8 以后就要废弃
1.JestClient:非官方,更新慢
2.RestTemplate:模拟发HTTP 请求,ES 很多操作需要自己封装,麻烦
3.HttpClient:同上
4.Elasticsearch-Rest-Client:官方RestClient,封装了ES 操作,API 层次分明,上手简单(最终选择)
版本要跟自己的ES版本对应
>
>org.elasticsearch.client >
>elasticsearch-rest-high-level-client >
>7.4.2 >
>
导入后注意依赖版本,因为是springboot项目会规定ES版
需要规定ES版本
>
>1.8 >
>7.4.2 >
>
使用spring data elasticsearch 也需要配置连接信息等
编写配置给容器中注入一个RestHighLevelClient 对象
@Configuration
public class XmallElasticSearchConfig {
//在请求ES时携带请求头信息
public static final RequestOptions COMMON_OPTIONS;
static {
RequestOptions.Builder builder = RequestOptions.DEFAULT.toBuilder();
// builder.addHeader("Authorization", "Bearer " + TOKEN);
// builder.setHttpAsyncResponseConsumerFactory(
// new HttpAsyncResponseConsumerFactory
// .HeapBufferedResponseConsumerFactory(30 * 1024 * 1024 * 1024));
COMMON_OPTIONS = builder.build();
}
@Bean
public RestHighLevelClient esRestClient(){
//如果是多个ES 可以配置多个Host
RestClientBuilder builder = RestClient.builder(new HttpHost("101.43.122.84", 9200,
"http"));
return new RestHighLevelClient(builder);
}
}
@RunWith(SpringRunner.class)
@SpringBootTest
public class XmallSearchApplicationTests {
//注入ES对象
@Autowired
RestHighLevelClient client;
/**
* 测试往ES中存储数据
*/
@Test
public void indexData() throws IOException {
IndexRequest indexRequest = new IndexRequest("users");
indexRequest.id("1"); //数据的id
/*
* 要保存的数据
*/
user user = new user();
user.setUsername("辛鹏");
user.setAge(18);
user.setGender("男");
String s = JSON.toJSONString(user);
indexRequest.source(s, XContentType.JSON);
//同步的方式保存数据
IndexResponse index = client.index(indexRequest, XmallElasticSearchConfig.COMMON_OPTIONS);
//响应数据
System.out.println(index);
}
@Data
class user{
private String username;
private String gender;
private Integer age;
}
@Test
public void contextLoads() {
System.out.println(client);
}
}
ES区别于关系型数据库的地方,宽表设计,不能去考虑数 据库范式。
index: 默认true,如果为false,表示该字段不会被索引,但是检索结果里面有,但字段本身不能 当做检索条件。**
doc_values:
默认true,设置为false,表示不可以做排序、聚合以及脚本操作,这样更节省磁盘空间。
还可以通过设定doc_values 为true,index 为false 来让字段不能被搜索但可以用于排序、聚
合以及脚本操作:**
PUT product
{
"mappings": {
"properties": {
"skuId": {
"type": "long"
},
"spuId": {
"type": "keyword" //精确匹配
},
"skuTitle": {
"type": "text",
"analyzer": "ik_smart"
},
"skuPrice": {
"type": "keyword"
},
"skuImg": {
"type": "keyword",
"index": false, //不被检索
"doc_values": false
},
"saleCount": {
"type": "long"
},
"hasStock": {
"type": "boolean"
},
"hotScore": {
"type": "long"
},
"brandId": {
"type": "long"
},
"catalogId": {
"type": "long"
},
"brandName": {
"type": "keyword",
"index": false,
"doc_values": false
},
"brandImg": {
"type": "keyword",
"index": false,
"doc_values": false
},
"catalogName": {
"type": "keyword",
"index": false,
"doc_values": false
},
"attrs": {
"type": "nested",
"properties": {
"attrId": {
"type": "long"
},
"attrName": {
"type": "keyword",
"index": false,
"doc_values": false
},
"attrValue": {
"type": "keyword"
}
}
}
}
}
}
如果存储的是数组的话,此数据会被扁平化处理,检索会出现误差,使用nested类型可以使用嵌入式数据,让数据不被扁平化处理
检索条件分析
完整查询条件
完整查询条件可能会有很多
keyword=小米
&sort=saleCount_desc/asc
&hasStock=0/1
&skuPrice=400_1900
&brandId=1
&catalog3Id=1
&attrs=1_3G:4G:5G
&attrs=2_骁龙845
&attrs=4_高清屏
可以将所有的查询条件封装成一个VO对象
package cn.cloud.xmall.search.vo;
import lombok.Data;
import java.util.List;
/**
* @Description: 封装页面所有可能传递过来的查询条件,检索关键字,三级分类Id...
* @author: Freedom
* @QQ: 1556507698
* @date:2022/3/17 21:18
*/
@Data
public class SearchParam {
/**
* 页面传递过来的全文匹配关键字
*/
private String keyword;
/**
* 品牌id,可以多选
*/
private List<Long> brandId;
/**
* 三级分类id
*/
private Long catalog3Id;
/**
* 排序条件:sort=price/salecount/hotscore_desc/asc
*/
private String sort;
/**
* 是否显示有货
*/
private Integer hasStock;
/**
* 价格区间查询
*/
private String skuPrice;
/**
* 按照属性进行筛选
*/
private List<String> attrs;
/**
* 页码
*/
private Integer pageNum = 1;
/**
* 原生的所有查询条件
*/
private String _queryString;
}
package com.xunqi.gulimall.search.service.impl;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.TypeReference;
import com.xunqi.common.es.SkuEsModel;
import com.xunqi.common.utils.R;
import com.xunqi.gulimall.search.config.GulimallElasticSearchConfig;
import com.xunqi.gulimall.search.constant.EsConstant;
import com.xunqi.gulimall.search.service.MallSearchService;
import com.xunqi.gulimall.search.vo.AttrResponseVo;
import com.xunqi.gulimall.search.vo.SearchParam;
import com.xunqi.gulimall.search.vo.SearchResult;
import com.xunqi.gulimall.search.feign.ProductFeignService;
import lombok.extern.slf4j.Slf4j;
import org.apache.lucene.search.join.ScoreMode;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.index.query.BoolQueryBuilder;
import org.elasticsearch.index.query.NestedQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.index.query.RangeQueryBuilder;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.bucket.nested.NestedAggregationBuilder;
import org.elasticsearch.search.aggregations.bucket.nested.ParsedNested;
import org.elasticsearch.search.aggregations.bucket.terms.ParsedLongTerms;
import org.elasticsearch.search.aggregations.bucket.terms.ParsedStringTerms;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.aggregations.bucket.terms.TermsAggregationBuilder;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.fetch.subphase.highlight.HighlightBuilder;
import org.elasticsearch.search.fetch.subphase.highlight.HighlightField;
import org.elasticsearch.search.sort.SortOrder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.util.StringUtils;
import javax.annotation.Resource;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.net.URLEncoder;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;
/**
* @Description:
* @Created: with IntelliJ IDEA.
* @author: 夏沫止水
* @createTime: 2020-06-13 14:19
**/
@Slf4j
@Service
public class MallSearchServiceImpl implements MallSearchService {
@Autowired
private RestHighLevelClient esRestClient;
@Resource
private ProductFeignService productFeignService;
@Override
public SearchResult search(SearchParam param) {
//1、动态构建出查询需要的DSL语句
SearchResult result = null;
//1、准备检索请求
SearchRequest searchRequest = buildSearchRequest(param);
try {
//2、执行检索请求
SearchResponse response = esRestClient.search(searchRequest, GulimallElasticSearchConfig.COMMON_OPTIONS);
//3、分析响应数据,封装成我们需要的格式
result = buildSearchResult(response,param);
} catch (IOException e) {
e.printStackTrace();
}
return result;
}
/**
* 构建结果数据
* 模糊匹配,过滤(按照属性、分类、品牌,价格区间,库存),完成排序、分页、高亮,聚合分析功能
* @param response
* @return
*/
private SearchResult buildSearchResult(SearchResponse response,SearchParam param) {
SearchResult result = new SearchResult();
//1、返回的所有查询到的商品
SearchHits hits = response.getHits();
List<SkuEsModel> esModels = new ArrayList<>();
//遍历所有商品信息
if (hits.getHits() != null && hits.getHits().length > 0) {
for (SearchHit hit : hits.getHits()) {
String sourceAsString = hit.getSourceAsString();
SkuEsModel esModel = JSON.parseObject(sourceAsString, SkuEsModel.class);
//判断是否按关键字检索,若是就显示高亮,否则不显示
if (!StringUtils.isEmpty(param.getKeyword())) {
//拿到高亮信息显示标题
HighlightField skuTitle = hit.getHighlightFields().get("skuTitle");
String skuTitleValue = skuTitle.getFragments()[0].string();
esModel.setSkuTitle(skuTitleValue);
}
esModels.add(esModel);
}
}
result.setProduct(esModels);
//2、当前商品涉及到的所有属性信息
List<SearchResult.AttrVo> attrVos = new ArrayList<>();
//获取属性信息的聚合
ParsedNested attrsAgg = response.getAggregations().get("attr_agg");
ParsedLongTerms attrIdAgg = attrsAgg.getAggregations().get("attr_id_agg");
for (Terms.Bucket bucket : attrIdAgg.getBuckets()) {
SearchResult.AttrVo attrVo = new SearchResult.AttrVo();
//1、得到属性的id
long attrId = bucket.getKeyAsNumber().longValue();
attrVo.setAttrId(attrId);
//2、得到属性的名字
ParsedStringTerms attrNameAgg = bucket.getAggregations().get("attr_name_agg");
String attrName = attrNameAgg.getBuckets().get(0).getKeyAsString();
attrVo.setAttrName(attrName);
//3、得到属性的所有值
ParsedStringTerms attrValueAgg = bucket.getAggregations().get("attr_value_agg");
List<String> attrValues = attrValueAgg.getBuckets().stream().map(item -> item.getKeyAsString()).collect(Collectors.toList());
attrVo.setAttrValue(attrValues);
attrVos.add(attrVo);
}
result.setAttrs(attrVos);
//3、当前商品涉及到的所有品牌信息
List<SearchResult.BrandVo> brandVos = new ArrayList<>();
//获取到品牌的聚合
ParsedLongTerms brandAgg = response.getAggregations().get("brand_agg");
for (Terms.Bucket bucket : brandAgg.getBuckets()) {
SearchResult.BrandVo brandVo = new SearchResult.BrandVo();
//1、得到品牌的id
long brandId = bucket.getKeyAsNumber().longValue();
brandVo.setBrandId(brandId);
//2、得到品牌的名字
ParsedStringTerms brandNameAgg = bucket.getAggregations().get("brand_name_agg");
String brandName = brandNameAgg.getBuckets().get(0).getKeyAsString();
brandVo.setBrandName(brandName);
//3、得到品牌的图片
ParsedStringTerms brandImgAgg = bucket.getAggregations().get("brand_img_agg");
String brandImg = brandImgAgg.getBuckets().get(0).getKeyAsString();
brandVo.setBrandImg(brandImg);
brandVos.add(brandVo);
}
result.setBrands(brandVos);
//4、当前商品涉及到的所有分类信息
//获取到分类的聚合
List<SearchResult.CatalogVo> catalogVos = new ArrayList<>();
ParsedLongTerms catalogAgg = response.getAggregations().get("catalog_agg");
for (Terms.Bucket bucket : catalogAgg.getBuckets()) {
SearchResult.CatalogVo catalogVo = new SearchResult.CatalogVo();
//得到分类id
String keyAsString = bucket.getKeyAsString();
catalogVo.setCatalogId(Long.parseLong(keyAsString));
//得到分类名
ParsedStringTerms catalogNameAgg = bucket.getAggregations().get("catalog_name_agg");
String catalogName = catalogNameAgg.getBuckets().get(0).getKeyAsString();
catalogVo.setCatalogName(catalogName);
catalogVos.add(catalogVo);
}
result.setCatalogs(catalogVos);
//===============以上可以从聚合信息中获取====================//
//5、分页信息-页码
result.setPageNum(param.getPageNum());
//5、1分页信息、总记录数
long total = hits.getTotalHits().value;
result.setTotal(total);
//5、2分页信息-总页码-计算
int totalPages = (int)total % EsConstant.PRODUCT_PAGESIZE == 0 ?
(int)total / EsConstant.PRODUCT_PAGESIZE : ((int)total / EsConstant.PRODUCT_PAGESIZE + 1);
result.setTotalPages(totalPages);
List<Integer> pageNavs = new ArrayList<>();
for (int i = 1; i <= totalPages; i++) {
pageNavs.add(i);
}
result.setPageNavs(pageNavs);
//6、构建面包屑导航
if (param.getAttrs() != null && param.getAttrs().size() > 0) {
List<SearchResult.NavVo> collect = param.getAttrs().stream().map(attr -> {
//1、分析每一个attrs传过来的参数值
SearchResult.NavVo navVo = new SearchResult.NavVo();
String[] s = attr.split("_");
navVo.setNavValue(s[1]);
R r = productFeignService.attrInfo(Long.parseLong(s[0]));
if (r.getCode() == 0) {
AttrResponseVo data = r.getData("attr", new TypeReference<AttrResponseVo>() {
});
navVo.setNavName(data.getAttrName());
} else {
navVo.setNavName(s[0]);
}
//2、取消了这个面包屑以后,我们要跳转到哪个地方,将请求的地址url里面的当前置空
//拿到所有的查询条件,去掉当前
String encode = null;
try {
encode = URLEncoder.encode(attr,"UTF-8");
encode.replace("+","%20"); //浏览器对空格的编码和Java不一样,差异化处理
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}
String replace = param.get_queryString().replace("&attrs=" + attr, "");
navVo.setLink("http://search.gulimall.com/list.html?" + replace);
return navVo;
}).collect(Collectors.toList());
result.setNavs(collect);
}
return result;
}
/**
* 准备检索请求
* 模糊匹配,过滤(按照属性,分类,品牌,价格区间,库存),排序,分页,高亮,聚合分析
* @return
*/
private SearchRequest buildSearchRequest(SearchParam param) {
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
/**
* 模糊匹配,过滤(按照属性,分类,品牌,价格区间,库存)
*/
//1. 构建bool-query
BoolQueryBuilder boolQueryBuilder=new BoolQueryBuilder();
//1.1 bool-must
if(!StringUtils.isEmpty(param.getKeyword())){
boolQueryBuilder.must(QueryBuilders.matchQuery("skuTitle",param.getKeyword()));
}
//1.2 bool-fiter
//1.2.1 catelogId
if(null != param.getCatalog3Id()){
boolQueryBuilder.filter(QueryBuilders.termQuery("catalogId",param.getCatalog3Id()));
}
//1.2.2 brandId
if(null != param.getBrandId() && param.getBrandId().size() >0){
boolQueryBuilder.filter(QueryBuilders.termsQuery("brandId",param.getBrandId()));
}
//1.2.3 attrs
if(param.getAttrs() != null && param.getAttrs().size() > 0){
param.getAttrs().forEach(item -> {
//attrs=1_5寸:8寸&2_16G:8G
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
//attrs=1_5寸:8寸
String[] s = item.split("_");
String attrId=s[0];
String[] attrValues = s[1].split(":");//这个属性检索用的值
boolQuery.must(QueryBuilders.termQuery("attrs.attrId",attrId));
boolQuery.must(QueryBuilders.termsQuery("attrs.attrValue",attrValues));
NestedQueryBuilder nestedQueryBuilder = QueryBuilders.nestedQuery("attrs",boolQuery, ScoreMode.None);
boolQueryBuilder.filter(nestedQueryBuilder);
});
}
//1.2.4 hasStock
if(null != param.getHasStock()){
boolQueryBuilder.filter(QueryBuilders.termQuery("hasStock",param.getHasStock() == 1));
}
//1.2.5 skuPrice
if(!StringUtils.isEmpty(param.getSkuPrice())){
//skuPrice形式为:1_500或_500或500_
RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("skuPrice");
String[] price = param.getSkuPrice().split("_");
if(price.length==2){
rangeQueryBuilder.gte(price[0]).lte(price[1]);
}else if(price.length == 1){
if(param.getSkuPrice().startsWith("_")){
rangeQueryBuilder.lte(price[1]);
}
if(param.getSkuPrice().endsWith("_")){
rangeQueryBuilder.gte(price[0]);
}
}
boolQueryBuilder.filter(rangeQueryBuilder);
}
//封装所有的查询条件
searchSourceBuilder.query(boolQueryBuilder);
/**
* 排序,分页,高亮
*/
//排序
//形式为sort=hotScore_asc/desc
if(!StringUtils.isEmpty(param.getSort())){
String sort = param.getSort();
String[] sortFileds = sort.split("_");
SortOrder sortOrder="asc".equalsIgnoreCase(sortFileds[1])?SortOrder.ASC:SortOrder.DESC;
searchSourceBuilder.sort(sortFileds[0],sortOrder);
}
//分页
searchSourceBuilder.from((param.getPageNum()-1)*EsConstant.PRODUCT_PAGESIZE);
searchSourceBuilder.size(EsConstant.PRODUCT_PAGESIZE);
//高亮
if(!StringUtils.isEmpty(param.getKeyword())){
HighlightBuilder highlightBuilder = new HighlightBuilder();
highlightBuilder.field("skuTitle");
highlightBuilder.preTags("");
highlightBuilder.postTags("");
searchSourceBuilder.highlighter(highlightBuilder);
}
/**
* 聚合分析
*/
//1. 按照品牌进行聚合
TermsAggregationBuilder brand_agg = AggregationBuilders.terms("brand_agg");
brand_agg.field("brandId").size(50);
//1.1 品牌的子聚合-品牌名聚合
brand_agg.subAggregation(AggregationBuilders.terms("brand_name_agg")
.field("brandName").size(1));
//1.2 品牌的子聚合-品牌图片聚合
brand_agg.subAggregation(AggregationBuilders.terms("brand_img_agg")
.field("brandImg").size(1));
searchSourceBuilder.aggregation(brand_agg);
//2. 按照分类信息进行聚合
TermsAggregationBuilder catalog_agg = AggregationBuilders.terms("catalog_agg");
catalog_agg.field("catalogId").size(20);
catalog_agg.subAggregation(AggregationBuilders.terms("catalog_name_agg").field("catalogName").size(1));
searchSourceBuilder.aggregation(catalog_agg);
//2. 按照属性信息进行聚合
NestedAggregationBuilder attr_agg = AggregationBuilders.nested("attr_agg", "attrs");
//2.1 按照属性ID进行聚合
TermsAggregationBuilder attr_id_agg = AggregationBuilders.terms("attr_id_agg").field("attrs.attrId");
attr_agg.subAggregation(attr_id_agg);
//2.1.1 在每个属性ID下,按照属性名进行聚合
attr_id_agg.subAggregation(AggregationBuilders.terms("attr_name_agg").field("attrs.attrName").size(1));
//2.1.1 在每个属性ID下,按照属性值进行聚合
attr_id_agg.subAggregation(AggregationBuilders.terms("attr_value_agg").field("attrs.attrValue").size(50));
searchSourceBuilder.aggregation(attr_agg);
log.debug("构建的DSL语句 {}",searchSourceBuilder.toString());
SearchRequest searchRequest = new SearchRequest(new String[]{EsConstant.PRODUCT_INDEX},searchSourceBuilder);
return searchRequest;
}
}