- SQL 的艺术(续):用 MyBatis-Plus 精雕细琢“外科手术”级更新接口 ✨
小丁学Java
MyBatisPlussqlmybatis数据库
我们再次切换到“SQL工匠”模式,用MyBatis-Plus来实现这个同样复杂的updateSolutionBrand接口。使用MyBatis-Plus实现这个接口,将再次凸显它与JPA在处理事务、部分更新和关联更新方面的巨大差异。这篇博客将重点展示如何通过手写SQL和精巧的逻辑编排,来完成这次“外科手术”。⚔️SQL的艺术(续):用MyBatis-Plus精雕细琢“外科手术”级更新接口你好,我是
- 策略与工厂的演进:打造工业级Spring路由框架
文章目录**引言:从“学术模型”到“工程产品”****一、经典工厂模式的“原罪”****原罪一:严重违反“开闭原则”——一场“永无止境的手术”****原罪二:彻底破坏“依赖注入”——一座“脱离现代文明的孤岛”****二、设计演进:注册表驱动的“智能工厂”****2.1设计的组成部分****2.2新设计如何“救赎”两大原罪**引言:从“学术模型”到“工程产品”设计模式的学习,最终要回归到解决复杂的业
- 大小不足5M,轻量级PDF阅读工具
“你是否也遇见过这样的窘境:明明只需要打开查看几页内容,却要安装一个几十兆甚至上百兆的软件,等待半天才能加载完成,老旧电脑更是卡顿得让人失去耐心。直到我发现了SmartPDF,才明白原来一款纯粹的PDF阅读器可以如此轻巧高效。它像一把精准的手术刀,剔除了所有冗余功能,只留下最核心的阅读体验,却解决了日常使用中的诸多痛点。4.7M的体积,装得下所有阅读需求第一次看到SmartPDF的安装包时,我简直
- 基于大模型的颅前窝底脑膜瘤诊疗全流程研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究意义与创新点二、颅前窝底脑膜瘤概述2.1定义与分类2.2发病机制与病因2.3临床表现与症状三、大模型预测原理与方法3.1大模型介绍3.2数据收集与预处理3.3模型训练与验证四、术前预测与准备4.1肿瘤特征预测4.2手术风险预测4.3术前检查与评估4.4患者沟通与教育五、手术方案制定5.1手术入路选择5.2手术步骤规划5.3术中监测与应急
- 人工智能在医疗领域的应用:技术革新与未来展望
人工智能(AI)技术正在重塑医疗行业的面貌。从辅助诊断到药物研发,从健康管理到手术机器人,AI的广泛应用不仅提升了医疗效率,还为精准医疗和个性化治疗提供了新可能。根据2025年多份研究报告及政策文件,全球AI医疗市场正以39.4%的年复合增长率高速扩张,预计到2025年,中国市场规模将达349亿元,全球规模则可能突破千亿美元18。本文将从应用场景、技术驱动、挑战与政策支持等维度,探讨AI在医疗领域
- 使用大模型预测胃穿孔的全流程系统技术方案大纲
目录一、项目概述二、项目背景三、建设目标四、建设内容(一)建设架构(二)核心功能(三)核心技术(四)预期成效(五)方案总结五、系统架构方案流程图六、实验验证证据七、健康教育与指导一、项目概述本项目旨在构建一套基于大模型的胃穿孔预测及全流程管理系统,通过整合术前、术中、术后各环节数据,利用先进的人工智能技术,实现对胃穿孔疾病的精准预测、手术方案优化、并发症风险预警以及术后护理指导等功能,为医疗决策提
- 基于大模型预测胸椎管狭窄诊疗全流程的研究报告
LCG元
围术期危险因子预测模型研究人工智能机器学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点1.3研究方法与数据来源二、胸椎管狭窄症概述2.1疾病定义与分类2.2病因与发病机制2.3流行病学特征三、大模型技术原理与应用现状3.1大模型基本原理3.2在医疗领域的应用案例3.3用于胸椎管狭窄预测的优势四、术前大模型预测4.1预测指标与数据收集4.2模型训练与验证4.3预测结果分析与临床意义五、基于预测的手术方案制定5.1手术方式选择依据5
- 基于大模型的慢性肾炎全流程预测与诊疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能机器学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点二、大模型技术原理与应用现状2.1大模型的基本原理与架构2.2医疗领域大模型的应用案例与成效三、慢性肾炎术前风险预测与手术方案制定3.1术前数据收集与特征提取3.2大模型预测术前慢性肾炎风险的方法3.3基于预测结果的手术方案制定四、慢性肾炎术中监测与风险应对4.1术中实时数据监测与分析4.2大模型在术中风险预测的应用4.3术中突发状况的应对策略
- 如何设计出覆盖率高且有效的测试用例?有哪些经典的测试用例设计方法?
996小白的进阶路
测试用例运维
如何设计出覆盖率高且有效的测试用例?深入解析经典测试用例设计方法在软件开发生命周期中,测试是确保产品质量、提升用户体验和维护品牌声誉的关键环节。而测试的核心在于“测试用例”——一组精心设计的输入、执行条件、预期结果和实际结果的集合。一个平庸的测试用例可能只是走个过场,而一个优秀的测试用例则能像精准的手术刀一样,直击软件的薄弱环节。那么,如何才能设计出覆盖率高且有效的测试用例呢?这不仅仅是一门技术,
- 【Maven】Maven深度避坑指南:依赖冲突全维度解决方案与工业级实战(超万字解析)
夜雨hiyeyu.com
mavenjava
注:本文基于50+大型企业级项目经验,结合Maven底层源码机制,系统化解决依赖冲突问题。包含20个实战场景、10类特殊案例及5大防御体系构建方案。Maven深度避坑指南:依赖冲突全维度解决方案与工业级实战(超万字解析)第一部分:依赖冲突核心原理深度解析1.1Maven依赖机制底层原理1.2类加载冲突的JVM级影响第二部分:八大实战解决方案深度强化2.1企业级排除方案(精准手术刀)2.2BOM模式
- 基于大模型的地中海贫血全流程预测与治疗管理研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的与目标1.3研究方法与数据来源二、地中海贫血概述2.1疾病定义与分类2.2病因与发病机制2.3流行病学特征2.4临床表现与诊断方法三、大模型技术原理与应用现状3.1大模型基本原理3.2在医疗领域的应用案例3.3应用于地中海贫血预测的优势四、术前风险预测与手术方案制定4.1术前风险因素分析4.2大模型预测模型构建与验证4.3根据预测制定个性化手术方案五、
- 基于大模型的胆囊结石全流程预测与诊疗系统技术方案
目录一、系统架构设计1.1数据采集与预处理模块1.2大模型核心算法模块二、全流程系统流程图三、系统集成方案3.1模块交互流程3.2数据流示意图四、系统部署拓扑图五、核心模块实现细节5.1术前风险预测算法5.2术中监测算法5.3术后并发症预测模型六、关键技术验证方案6.1模型验证流程6.2临床试验设计框架七、典型应用场景流程7.1腹腔镜手术决策流程一、系统架构设计1.1数据采集与预处理模块#数据采集
- 基于大模型的胆囊结石全流程预测与诊疗系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、系统架构设计(一)数据采集与预处理模块(二)大模型核心算法模块(三)应用层功能模块三、全流程系统流程图四、术前阶段详细方案(一)患者信息采集与整合(二)胆囊结石风险预测(三)手术方案制定辅助(四)麻醉方案规划五、术中阶段详细方案(一)实时数据监测与传输(二)手术进程智能辅助六、术后阶段详细方案(一)术后恢复情况预测(二)并发症风险预测(三)护理方案调整(四)康复指导七、并发症风险预
- 深入浅出Babel插件开发:从AST到代码转换的完整指南
MiyueFE
javascript前端
嘿,各位前端小伙伴们!今天咱们来聊聊一个既神秘又强大的东西——Babel插件开发。别被"AST"、“代码转换"这些高大上的词汇吓到,其实Babel插件开发就像是给代码做"整容手术”,让老旧的代码变得年轻时尚,让复杂的语法变得简单易懂。什么是Babel插件?简单来说,Babel插件就是一个代码转换器。它能够:语法转换:把ES6+语法转换成ES5API填充:为新API添加polyfill代码优化:移除
- AR技术:开启工业维修新纪元,赋能效率与精准
Teamhelper_AR
ar
在当今数字化浪潮的推动下,增强现实(AR)技术正以前所未有的速度改变着工业维修领域的面貌。从能源勘探到工业制造,从新能源运维到医疗手术,AR技术的应用不仅极大地提高了工作效率,还为专业人员提供了前所未有的精准支持。本文将深入探讨AR技术如何解决工业维修中的难题,并展望其在未来的发展趋势。引言:AR技术,工业维修的新引擎2025年,增强现实(AR)技术已从科幻概念蜕变为驱动产业升级的核心引擎。全球A
- 基于大模型的急性结石性胆囊炎全流程预测与干预系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、术前阶段(一)疾病预测与诊断辅助(二)手术风险评估(三)手术方案制定辅助三、术中阶段(一)实时监测与风险预警(二)手术决策支持四、术后阶段(一)并发症风险预测(二)术后护理计划制定五、麻醉方案定制与优化(一)术前麻醉风险评估(二)术中麻醉管理六、统计分析与模型优化(一)数据收集与整理(二)模型性能评估(三)模型优化与更新七、实验验证与证据支持(一)回顾性队列研究(二)前瞻性随机对照
- 盲法在临床试验中的应用与挑战
qq_34062333
临床试验统计学
一、盲法分级与科学价值1.1开放标签1.1.1受盲对象无隐藏。1.1.2适用场景外科手术、器械试验等无法伪装的操作。1.1.3偏倚控制目标仅客观终点(生存率、实验室指标)。1.2单盲1.2.1受盲对象患者。1.2.2适用场景患者报告结局(PRO)为主的试验(如抑郁症)。1.2.3偏倚控制目标避免患者期望效应影响主观症状报告。1.3双盲1.3.1受盲对象患者+研究者+评估员。1.3.2适用场景药物试
- 中乌医学交流新篇:乌克兰专家探访北京积水潭医院,共研心磁图技术创新
MilieStone
技术创新生活科技
2025年5月13日,乌克兰资深麻醉科专家莎莱博士到访北京积水潭医院新龙泽院区及回龙观院区,开展为期两天的学术交流活动。访问期间,莎莱博士与医院心内科主任刘巍教授团队深入探讨心血管疾病诊疗技术,并就心磁图仪(MCG)的临床应用成果展开深度交流。莎莱博士先后参观了医院各科门诊及介入治疗中心。受刘巍主任邀请观摩TAVI,并与麻醉科专家就围手术期麻醉管理进行了深入交流。期间,刘巍主任团队现场演示了国产自
- 大模型在坏疽及穿孔性阑尾炎预测与治疗方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能机器学习深度学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点二、大模型技术概述2.1大模型原理与架构2.2医学领域相关应用案例三、坏疽及穿孔性阑尾炎的术前预测3.1危险因素分析3.2大模型预测模型构建3.3预测结果与临床评估四、基于预测的手术方案制定4.1手术方式选择依据4.2手术步骤与关键要点4.3案例分析五、麻醉方案确定5.1麻醉方式选择5.2麻醉药物使用5.3麻醉过程监测与管理六、术中情况监测与处
- 基于大模型的心力衰竭预测与干预全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录一、引言二、系统概述三、术前阶段(一)患者信息采集与预处理(二)大模型预测心力衰竭风险(三)手术方案制定辅助(四)麻醉方案规划四、术中阶段(一)实时数据监测与传输(二)大模型术中决策支持五、术后阶段(一)术后病情监测与评估(二)并发症风险预测与防控(三)术后护理计划生成六、健康教育与指导(一)个性化教育内容生成(二)康复随访与远程指导七、统计分析与技术验证(一)系统性能评估指标(二)数据分割与
- 《开窍·开悟·开智》读书笔记
mitt_
笔记
1.打破常规思维,不被习惯束缚去看待事情。2.真是自己的情绪,别让负面情绪主导行为。3.真诚倾听他人观点,别急于表达自己。4.制定清晰计划,合理分配时间,提高效率。5.全面认识自己,挖掘潜在优势和隐藏不足。6.运用一些方法训练专注力,如限时任务。7.用积极乐观的心态,主动迎接挑战。8.与他人交往多付出真心,而非只考虑自身利益。9.树立终身学习观念,不断更新知识储备。10.面对压力通过运动,倾诉等方
- 大模型在支气管哮喘慢性持续期全流程风险预测与治疗方案制定中的应用研究
LCG元
围术期危险因子预测模型研究算法人工智能机器学习
目录一、引言1.1研究背景与意义1.2研究目标与方法1.3研究创新点二、支气管哮喘概述2.1定义与发病机制2.2分类与临床表现2.3诊断标准与方法三、大模型技术原理与应用现状3.1大模型的基本原理3.2在医疗领域的应用案例分析3.3适用于支气管哮喘预测的大模型选择四、大模型在支气管哮喘术前预测中的应用4.1数据收集与预处理4.2模型训练与验证4.3预测指标与结果分析五、基于大模型预测的手术方案制定
- 基于大模型预测原发性醛固酮增多症的综合技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、引言二、技术方案概述三、术前阶段(一)数据采集与预处理(二)疾病诊断与分型预测(三)并发症风险预测四、术中阶段(一)实时数据监测与整合(二)手术决策支持(三)麻醉方案动态优化五、术后阶段(一)康复进度监测与预测(二)并发症监测与干预(三)术后护理指导六、统计分析与技术验证(一)模型性能评估指标体系(二)对比研究与临床实效分析七、实验验证证据(一)回顾性病例研究(二)前瞻性临床试验八、健康教
- 大模型在支气管哮喘急性发作期预测及治疗方案制定中的应用研究
LCG元
围术期危险因子预测模型研究算法人工智能机器学习
目录一、引言1.1研究背景与意义1.2研究目标与方法1.3研究创新点二、支气管哮喘概述2.1定义与发病机制2.2分类与临床表现2.3诊断标准与方法三、大模型技术原理与应用现状3.1大模型的基本原理3.2在医疗领域的应用案例分析3.3适用于支气管哮喘预测的大模型选择四、大模型在支气管哮喘术前预测中的应用4.1数据收集与预处理4.2模型训练与验证4.3预测指标与结果分析五、基于大模型预测的手术方案制定
- 基于大模型预测十二指肠球部穿孔的多维度研究报告
LCG元
围术期危险因子预测模型研究算法人工智能机器学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点1.3国内外研究现状二、大模型技术原理与应用基础2.1大模型介绍2.2数据收集与预处理2.3模型训练与优化三、术前预测与准备3.1术前风险预测指标与模型构建3.2基于预测结果的手术方案制定3.3麻醉方案的选择与实施3.4术前患者评估与准备工作四、术中监测与决策支持4.1术中实时数据监测与分析4.2大模型在术中的应用场景与作用4.3手术过程中的风
- 大模型在急性弥漫性腹膜炎预测及治疗方案制定中的应用研究
LCG元
围术期危险因子预测模型研究大数据人工智能
目录一、引言1.1研究背景与意义1.2研究目的与方法二、急性弥漫性腹膜炎概述2.1定义与分类2.2病因与发病机制2.3临床表现与诊断方法三、大模型在急性弥漫性腹膜炎预测中的应用3.1大模型介绍3.2数据收集与处理3.3模型训练与优化四、术前风险预测与准备方案4.1大模型预测术前风险4.2术前检查与评估4.3术前准备措施五、术中风险预测与手术方案制定5.1大模型预测术中风险5.2手术方案制定原则5.
- 打造不会遗忘的AI:一位旅行社特工的记忆移植手术
步子哥
人工智能搜索引擎
在人工智能(AI)的黎明时代,我们创造出的“智能体”大多像是一个个记忆只有七秒的“数字金鱼”。每一次对话都是一次全新的开始,它们无法记住你的名字、你的偏好,更不用说你上周跟它聊过的那个宏伟的旅行计划了。这种“失忆症”极大地限制了AI的潜能,使其难以在需要连续性、个性化和强韧性的复杂任务中大展拳。然而,科学的魅力就在于不断突破看似不可能的界限。今天,我们将一起踏上一段激动人心的旅程,亲手为一位AI旅
- 大规模胰腺癌检测通过非对比增强CT和深度学习| 文献速递-视觉通用模型与疾病诊断
有Li
深度学习人工智能
Title题目Large-scalepancreaticcancerdetectionvianon-contrastCTanddeeplearning大规模胰腺癌检测通过非对比增强CT和深度学习01文献速递介绍胰腺导管腺癌(PDAC)是最致命的实体恶性肿瘤,通常在晚期和不可手术的阶段被检测到。早期或偶然发现与延长生存期相关,但使用单一测试筛查无症状个体的PDAC仍然不可行,因为假阳性的潜在危害和低
- C++强制转换:安全编程的终极武器
程序员弘羽
C/C++重温c++数据结构开发语言c语言
在C++中,类型安全是构建健壮程序的核心保障。C风格的强制转换((type)expression)虽然强大,但就像没有安全措施的杂技表演——能完成任务,却随时可能引发灾难。为此,C++引入了四种强类型转换操作符:static_castdynamic_castconst_castreinterpret_cast它们为类型转换提供了更精准、更安全的“手术刀”,使代码更具可读性、可维护性和安全性。一、C
- 使用大模型预测短暂性脑缺血发作(TIA)的全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能深度学习机器学习方案大纲
目录一、系统概述1.1方案背景1.2方案目标1.3方案范围二、术前预测方案2.1数据收集与整合2.2模型构建与训练2.3手术方案生成三、术中决策方案3.1实时数据监测3.2大模型实时风险预警3.3麻醉方案动态调整四、术后风险预测与护理方案4.1术后并发症预测4.2个性化护理方案4.3出院风险评估与随访计划五、并发症风险预测方案5.1风险因素分析5.2预测模型构建5.3预测结果应用六、技术验证方法6
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p