- Python reduce()函数详解:累积计算的艺术
盛夏绽放
python开发语言有问必答
文章目录Pythonreduce()函数详解:累积计算的艺术一、reduce()函数基础1.核心概念2.工作原理3.基本语法二、reduce()的5种典型用法1.基本数值计算2.使用初始值3.复杂对象处理4.与map组合使用5.实现高级功能三、reduce()的执行过程详解1.无初始值的情况2.有初始值的情况3.可视化流程四、reduce()的注意事项五、reduce()与替代方案的对比1.与循环
- 【SpringBoot】Spring Boot热部署方案的 终极深度解析,覆盖IDEA配置、JRebel原理级实操、DevTools内核机制及生产级调优策略,共分6大模块
夜雨hiyeyu.com
springbootintellij-idea后端mavenjavaideaspring
SpringBoot热部署方案的终极深度解析,覆盖IDEA配置、JRebel原理级实操、DevTools内核机制及生产级调优策略一、热部署核心原理与架构1.JVM类加载机制限制2.字节码热替换技术对比二、JRebel企业级部署全流程1.深层配置指南2.多模块项目热加载3.热替换失败解决方案三、DevTools内核级调优1.类加载隔离机制2.资源热更新策略3.生产级问题诊断四、高效协同工作流1.ID
- 【机器学习|学习笔记】随机森林(Random Forest, RF)详解,附代码。
努力毕业的小土博^_^
机器学习基础算法优质笔记1机器学习学习笔记随机森林人工智能
【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。文章目录【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。前言起源随机子空间法与Bagging的萌芽原理算法机制理论保障发展应用优缺点优点缺点Python实现示例(Scikit-learn)欢迎铁子们点赞、关注、收藏
- 5 分钟快速入门:使用 Nginx 搭建简易 API Gateway
AI云原生与云计算技术学院
nginxgateway运维ai
5分钟快速入门:使用Nginx搭建简易APIGateway关键词:Nginx,APIGateway,反向代理,负载均衡,微服务,接口路由,跨域处理摘要:本文将系统讲解如何利用Nginx快速搭建一个具备基础功能的API网关,涵盖反向代理、负载均衡、跨域处理、请求转发等核心技术点。通过分步实操演示与原理分析,帮助开发者理解API网关在现代分布式架构中的核心作用,并掌握基于Nginx的快速落地方法。文章
- 云原生API Gateway:连接微服务的桥梁
AI云原生与云计算技术学院
云原生gateway微服务ai
云原生APIGateway:连接微服务的桥梁关键词:云原生、API网关、微服务架构、服务治理、流量管理、服务网格、DevOps摘要:本文深入探讨云原生环境下API网关的核心原理与实践应用,解析其在微服务架构中作为统一入口的关键作用。通过详细阐述API网关的核心功能、技术架构、算法原理及数学模型,结合Kubernetes实战案例演示流量管理、安全防护、服务编排等核心能力。同时分析典型应用场景,推荐前
- 开源的人像动画生成工具LivePortrait
研创通之逍遥峰
图像处理人工智能作画
LivePortrait是由快手科技联合中国科学技术大学和复旦大学共同开发的一款先进AI驱动肖像动画工具,它能够将静态的人像照片转化为带有真实面部表情和头部运动的动态视频。这项技术代表了当前AI生成内容(AIGC)领域的最新进展,通过创新的算法设计和高效的计算框架,为用户提供了强大且易用的动画生成能力。以下将从技术原理、核心功能、应用场景、使用方法和比较优势等多个维度,全面介绍这一工具。LiveP
- 运维打铁: 数据库主从复制与读写分离配置
懂搬砖
运维打铁原力计划运维数据库adb
文章目录思维导图一、数据库主从复制原理配置步骤1.主库配置2.从库配置3.验证配置二、数据库读写分离原理配置方法1.中间件实现2.应用层实现总结思维导图数据库主从复制与读写分离配置数据库主从复制数据库读写分离原理配置步骤主库配置从库配置验证配置原理配置方法中间件实现应用层实现一、数据库主从复制原理数据库主从复制是一种将主数据库的数据复制到一个或多个从数据库的技术。主数据库负责处理写操作,从数据库负
- ChatGPT之后:AI原生应用如何推动人机共创2.0时代?
Agentic AI人工智能与大数据
CSchatgptAI-nativeai
ChatGPT之后:AI原生应用如何推动人机共创2.0时代?关键词:AI原生应用、人机共创2.0、生成式AI、认知增强、协作范式变革摘要:ChatGPT的爆发不仅是AI技术的突破,更标志着人机关系的转折点。本文将从「AI原生应用」这一核心概念出发,通过技术原理、协作模式演变、典型场景和未来趋势的深度解析,揭示AI如何从「工具助手」升级为「共创伙伴」,推动人机关系进入「能力融合、双向激发」的2.0时
- 大语言模型与增强现实:空间计算时代的AI原生应用
Agentic AI人工智能与大数据
CS语言模型ar空间计算ai
大语言模型与增强现实:空间计算时代的AI原生应用关键词:大语言模型(LLM)、增强现实(AR)、空间计算、AI原生应用、多模态交互、具身智能、虚实融合摘要:当“能对话的AI大脑”(大语言模型)遇到“能叠加虚拟世界的魔法眼镜”(增强现实),一场空间计算时代的革命正在发生。本文将带你一步步拆解大语言模型与AR的“强强联合”:从基础概念到技术原理,从真实案例到未来趋势,用“给小学生讲故事”的方式,讲清这
- Java领域Spring Cloud Eureka高可用集群搭建
Java大师兄学大数据AI应用开发
javaspringcloudeurekaai
Java领域SpringCloudEureka高可用集群搭建关键词:SpringCloud、Eureka、服务注册与发现、高可用集群、微服务架构、服务治理、负载均衡摘要:本文深入探讨了在Java生态中使用SpringCloudEureka构建高可用服务注册中心集群的完整方案。文章从Eureka的核心原理出发,详细讲解了高可用集群的架构设计、配置实现和最佳实践,包括多节点相互注册机制、自我保护模式优
- AIGC 领域 AI 写作如何实现智能内容推荐
SuperAGI2025
AIGC人工智能ai
AIGC领域AI写作如何实现智能内容推荐关键词:AIGC、AI写作、智能内容推荐、推荐算法、用户画像摘要:本文聚焦于AIGC领域中AI写作的智能内容推荐实现。首先介绍了该主题的背景,包括目的、预期读者等内容。接着阐述了核心概念与联系,如AIGC、AI写作、智能内容推荐等概念及其关联。详细讲解了核心算法原理,包括协同过滤、基于内容的推荐等,并给出Python代码示例。探讨了相关数学模型和公式,通过具
- 关于 Linux中系统调优的一些笔记
山河已无恙
Linux笔记Linux性能调优1024程序员节linux运维
写在前面推送的的邮件里看到有大佬讲的公共课,听了之后这里整理学习笔记。因为是公开课,所以讲的很浅,没接触过,这里做为了解,长长见识。博文内容包括系统调优原理概述如何检测系统的性能瓶颈如何进行内核参数调优如何限制服务的资源占用自定义tuned调优配置集我突然又明白,死亡是聪明的兄长,我们可以放心地把自己托付给他,他会知道在我们有所准备的适当时刻前来。我也突然懂得,原来痛苦、失望和悲愁不是为了惹恼我们
- 俄罗斯方块AI深度解析:从算法原理到实现细节
智算菩萨
Python小游戏项目实战人工智能算法
俄罗斯方块AI深度解析:从算法原理到实现细节前言俄罗斯方块,这个诞生于1984年的经典游戏,至今仍然是人工智能研究领域的热门课题。当简单的几何形状在网格中不断下落时,看似简单的规则背后却隐藏着复杂的策略决策问题。本文将深入剖析一个基于Python实现的俄罗斯方块AI系统,探讨其如何通过精巧的算法设计实现近乎完美的自动游戏表现。游戏状态的数字化抽象在构建任何游戏AI之前,我们首先需要将人类直观理解的
- AI原生应用:多模态交互技术的5大核心应用场景解析
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络AI-nativeai
#AI原生应用:多模态交互技术的5大核心应用场景解析>关键词:多模态交互、AI原生应用、人机交互、深度学习、应用场景>摘要:本文将深入解析多模态交互技术的核心原理,通过智能家居、医疗诊断、自动驾驶、教育创新和虚拟助手五大应用场景,揭示AI如何像人类感官协同工作般理解世界。文章包含技术原理图解、真实案例代码和未来趋势预测。##背景介绍###目的和范围解析多模态交互技术在AI原生应用中的落地实践,涵盖
- Bash Shell面试题高级汇总002
韩公子的Linux大集市
Bash入门bash开发语言
文章目录一、Shell原理进阶二、性能与资源管理三、并发控制与IPC四、安全与防御五、调试与追踪六、文本处理黑科技七、系统级深入题八、容器化环境九、综合场景题十、面试官深度追问方向以下是一份深度梳理的LinuxShell高级面试题汇总,涵盖脚本优化、系统原理、故障排查、安全实践等高频考点,适用于中高级开发/运维岗位:一、Shell原理进阶exec3<>file的作用是什么?文件描述符0-2的默认指
- https和http有什么区别
洞阳
面试计算机网络httphttps网络协议
目录一、核心区别:是否基于加密传输二、底层传输机制差异三、HTTPS的加密原理四、应用场景差异五、其他细节区别总结在网络通信中,HTTP(HypertextTransferProtocol,超文本传输协议)和HTTPS(HypertextTransferProtocolSecure,超文本传输安全协议)是两种常用的应用层协议,核心区别在于安全性、底层传输机制和使用场景。以下是详细说明:一、核心区别
- 大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
在人工智能的浪潮之巅,我们总会惊叹于GPT-4、Llama3.1、Qwen2.5这些顶尖大语言模型(LLM)所展现出的惊人能力。它们似乎无所不知,能写诗、能编程、能进行复杂的逻辑推理。一个自然而然的问题是:它们是如何“学”会这一切的?大多数人会回答:“用海量数据喂出来的。”这个答案只说对了一半。如果你认为只要把互联网上能找到的所有数据(比如15万亿个token)随机打乱,然后“一锅烩”地喂给模型,
- 如何最大化YashanDB数据库的存储性能
数据库
在数据库技术领域,存储性能不仅对数据的读写速度有直接影响,同时也关系到整个系统的效率和穷尽的业务能力。数据库管理员和系统架构师常面临着性能瓶颈、I/O瓶颈等问题,并需要通过优化存储结构、合理设计索引、选择合适的部署架构等手段来提升存储性能。本文将详细解析YashanDB数据库的存储性能优化,包括存储管理、数据结构选择、并行处理等多方面的技术原理和实践要点。存储架构优化部署架构选择YashanDB支
- 【机器学习笔记 Ⅱ】4 神经网络中的推理
推理(Inference)是神经网络在训练完成后利用学到的参数对新数据进行预测的过程。与训练阶段不同,推理阶段不计算梯度也不更新权重,仅执行前向传播。以下是其实现原理和代码示例的完整解析:1.推理的核心步骤加载训练好的模型参数(权重和偏置)。前向传播:输入数据逐层计算,得到输出。后处理:根据任务类型解析输出(如分类取概率最大值,回归直接输出)。2.代码实现(Python+NumPy)(1)定义模型
- Kafka 消费者组再平衡优化实践指南
一、Kafkarebalance原理与影响原理消费者通过subscribe(topics)向协调器(GroupCoordinator)注册组成员。协调器根据partition.assignment.strategy(默认StickyAssignor)自动分配各消费者的分区列表。每次成员加入/离开,都会经历:REVOKE:撤销旧的分区分配ASSIGN:重新分配所有分区期间所有消费者的poll()会被
- STM实战开发(4):STM32控制蜂鸣器发声的开发博客
嵌入式开发项目
2025年嵌入式开发stm32嵌入式硬件单片机物联网
1.前言随着智能硬件的发展,蜂鸣器成为了很多嵌入式系统中的一个常见输出装置。无论是作为警报声,还是作为提示音,蜂鸣器都可以为用户提供直观的声音反馈。在嵌入式开发中,STM32由于其强大的性能和灵活的外设配置,成为了实现蜂鸣器控制的理想平台。本文将以STM32为开发平台,详细讲解如何控制蜂鸣器发声。通过本篇博客,你将能够了解蜂鸣器的工作原理、如何连接蜂鸣器到STM32单片机,以及如何编写控制蜂鸣器的
- STM32之有源蜂鸣器模块
如愿小李单片机设计
单片机嵌入式硬件stm32
目录一、系统概述二、无源蜂鸣器模块简介2.1基本概念与工作原理2.2与无源蜂鸣器对比2.3关键电气参数2.4硬件驱动设计2.5选型与使用注意事项三、硬件设计3.1硬件组成3.2硬件连接四、软件设计4.1开发环境配置4.2关键代码实现4.2.1GPIO初始化4.2.2蜂鸣器控制函数4.2.3报警模式实现五、注意事项5.1驱动电路必须使用三极管5.2电压匹配5.3保护措施5.4电流消耗六、总结一、系统
- 【零基础学AI】第29讲:BERT模型实战 - 情感分析
1989
0基础学AIbert人工智能深度学习神经网络cnnpython自然语言处理
本节课你将学到BERT模型的核心原理与优势HuggingFaceTransformers库的BERT接口使用情感分析任务的完整实现流程模型微调(Fine-tuning)技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtransformersdatasetspandastqdmGPU推荐(可加速训练)前置知识第28讲Transformer基础基本PyTorch使用
- 【零基础学AI】第27讲:注意力机制(Attention) - 机器翻译实战
1989
0基础学AI人工智能机器翻译自然语言处理pythontensorflow机器学习神经网络
本节课你将学到理解注意力机制的核心思想掌握注意力计算的数学原理实现基于注意力机制的Seq2Seq模型构建英语到法语的神经翻译系统开始之前环境要求Python3.8+需要安装的包:tensorflow==2.8.0numpy==1.21.0matplotlib==3.4.0pandas==1.3.0前置知识RNN/LSTM原理(第26讲)序列数据处理(第26讲)自然语言处理基础(第14讲)核心概念为
- TensorFlow图神经网络(GNN)入门指南
AI天才研究院
AI人工智能与大数据tensorflow神经网络人工智能ai
TensorFlow图神经网络(GNN)入门指南关键词:TensorFlow、图神经网络、GNN、深度学习、图数据、节点嵌入、图卷积网络摘要:本文全面介绍如何使用TensorFlow实现图神经网络(GNN)。我们将从图数据的基本概念开始,深入探讨GNN的核心原理,包括图卷积网络(GCN)、图注意力网络(GAT)等流行架构,并通过TensorFlow代码示例展示如何构建和训练GNN模型。文章还将涵盖
- HarmonyOS多语言支持:如何实现语言资源智能分发
操作系统内核探秘
操作系统内核揭秘harmonyos华为ai
HarmonyOS多语言支持:如何实现语言资源智能分发关键词:HarmonyOS、多语言支持、资源分发、智能调度、动态加载、国际化、本地化摘要:本文深入解析HarmonyOS多语言资源管理体系,系统阐述从基础架构设计到智能分发算法的核心技术。通过剖析资源目录结构、配置文件语法、动态加载机制等底层原理,结合自适应优先级调度算法和数学匹配模型,展示如何实现基于用户习惯、设备环境、区域特征的智能资源分发
- AI LLM架构与原理 - 预训练模型深度解析
陈乔布斯
AI人工智能大模型人工智能架构机器学习深度学习大模型PythonAI
一、引言在人工智能领域,大型语言模型(LLM)的发展日新月异,预训练模型作为LLM的核心技术,为模型的强大性能奠定了基础。预训练模型通过在大规模无标注数据上进行学习,能够捕捉语言的通用模式和语义信息,从而在各种自然语言处理任务中展现出卓越的能力。本文将深入探讨AILLM架构与原理中预训练模型的方法论和技术,结合图解、代码解析和实际案例,为读者呈现一个全面且易懂的预训练模型图景。二、预训练模型的基本
- PEFT(参数高效微调)技术全面解析:原理、方法与实战应用
文章目录一、PEFT核心概念解析1.1PEFT技术定义1.2与传统微调的对比二、为什么需要PEFT技术?2.1大模型时代的核心挑战2.2PEFT的核心优势三、主流PEFT方法技术剖析3.1代表性PEFT方法对比3.2关键技术实现细节3.2.1LoRA(Low-RankAdaptation)3.2.2Adapter模块3.3性能对比基准四、PEFT实战应用指南4.1使用HuggingFacePEFT
- web与Java代码保护:混淆、压缩及反编译工具详解
本文还有配套的精品资源,点击获取简介:为保障代码的安全性和保密性,IT行业中开发者采用代码混淆和压缩技术。本文将深入探讨web代码混淆压缩工具和Java代码反编译工具,解释它们的工作原理及应用。混淆工具如UglifyJS和Terser用于混淆JavaScript代码,使其难以理解;压缩工具如YUICompressor和GoogleClosureCompiler减小JavaScript和CSS文件的
- 探究 Java SPI 原理与实战_打造高扩展性的应用架构
随风九天
javajava架构开发语言JavaSPI
1.引言1.1为什么需要模块化与扩展性设计在大型软件系统中,良好的架构设计是至关重要的。模块化和可扩展性设计使得我们能够:将功能划分为独立的模块;在不修改原有代码的前提下引入新功能;实现松耦合、高内聚的设计目标。Java提供了多种机制来支持这种设计,其中SPI(ServiceProviderInterface)是一种轻量级的服务发现机制,广泛用于构建插件化系统。1.2Java中的常见扩展机制概述扩
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。