1、易混淆操作
本节对一些 Python 易混淆的操作进行对比。
1.1 有放回随机采样和无放回随机采样
import randomrandom.choices(seq, k=1) # 长度为k的list,有放回采样random.sample(seq, k) # 长度为k的list,无放回采样
1.2 lambda 函数的参数
func = lambda y: x + y # x的值在函数运行时被绑定func = lambda y, x=x: x + y # x的值在函数定义时被绑定
1.3 copy 和 deepcopy
import copyy = copy.copy(x) # 只复制最顶层y = copy.deepcopy(x) # 复制所有嵌套部分
复制和变量别名结合在一起时,容易混淆:
a = [1, 2, [3, 4]]# Alias.b_alias = a assert b_alias == a and b_alias is a# Shallow copy.b_shallow_copy = a[:] assert b_shallow_copy == a and b_shallow_copy is not a and b_shallow_copy[2] is a[2]# Deep copy.import copyb_deep_copy = copy.deepcopy(a) assert b_deep_copy == a and b_deep_copy is not a and b_deep_copy[2] is not a[2]
对别名的修改会影响原变量,(浅)复制中的元素是原列表中元素的别名,而深层复制是递归的进行复制,对深层复制的修改不影响原变量。
2、常用工具
2.1 读写 CSV 文件
import csv# 无header的读写with open(name, 'rt', encoding='utf-8', newline='') as f: # newline=''让Python不将换行统一处理 for row in csv.reader(f): print(row[0], row[1]) # CSV读到的数据都是str类型with open(name, mode='wt') as f: f_csv = csv.writer(f) f_csv.writerow(['symbol', 'change'])# 有header的读写with open(name, mode='rt', newline='') as f: for row in csv.DictReader(f): print(row['symbol'], row['change'])with open(name, mode='wt') as f: header = ['symbol', 'change'] f_csv = csv.DictWriter(f, header) f_csv.writeheader() f_csv.writerow({'symbol': xx, 'change': xx})
注意,当 CSV 文件过大时会报错:_csv.Error: field larger than field limit (131072),通过修改上限解决
import syscsv.field_size_limit(sys.maxsize)
csv 还可以读以 \t 分割的数据
f = csv.reader(f, delimiter='\t')
2.2 迭代器工具
itertools 中定义了很多迭代器工具,例如子序列工具:
import itertoolsitertools.islice(iterable, start=None, stop, step=None)# islice('ABCDEF', 2, None) -> C, D, E, Fitertools.filterfalse(predicate, iterable) # 过滤掉predicate为False的元素# filterfalse(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6itertools.takewhile(predicate, iterable) # 当predicate为False时停止迭代# takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 1, 4itertools.dropwhile(predicate, iterable) # 当predicate为False时开始迭代# dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6, 4, 1itertools.compress(iterable, selectors) # 根据selectors每个元素是True或False进行选择# compress('ABCDEF', [1, 0, 1, 0, 1, 1]) -> A, C, E, F
序列排序:
sorted(iterable, key=None, reverse=False)itertools.groupby(iterable, key=None) # 按值分组,iterable需要先被排序# groupby(sorted([1, 4, 6, 4, 1])) -> (1, iter1), (4, iter4), (6, iter6)itertools.permutations(iterable, r=None) # 排列,返回值是Tuple# permutations('ABCD', 2) -> AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DCitertools.combinations(iterable, r=None) # 组合,返回值是Tupleitertools.combinations_with_replacement(...)# combinations('ABCD', 2) -> AB, AC, AD, BC, BD, CD
多个序列合并:
itertools.chain(*iterables) # 多个序列直接拼接# chain('ABC', 'DEF') -> A, B, C, D, E, Fimport heapqheapq.merge(*iterables, key=None, reverse=False) # 多个序列按顺序拼接# merge('ABF', 'CDE') -> A, B, C, D, E, Fzip(*iterables) # 当最短的序列耗尽时停止,结果只能被消耗一次itertools.zip_longest(*iterables, fillvalue=None) # 当最长的序列耗尽时停止,结果只能被消耗一次
2.3 计数器
计数器可以统计一个可迭代对象中每个元素出现的次数。
import collections# 创建collections.Counter(iterable)# 频次collections.Counter[key] # key出现频次# 返回n个出现频次最高的元素和其对应出现频次,如果n为None,返回所有元素collections.Counter.most_common(n=None)# 插入/更新collections.Counter.update(iterable)counter1 + counter2; counter1 - counter2 # counter加减# 检查两个字符串的组成元素是否相同collections.Counter(list1) == collections.Counter(list2)
2.4 带默认值的 Dict
当访问不存在的 Key 时,defaultdict 会将其设置为某个默认值。
import collectionscollections.defaultdict(type) # 当第一次访问dict[key]时,会无参数调用type,给dict[key]提供一个初始值
2.5 有序 Dict
import collectionscollections.OrderedDict(items=None) # 迭代时保留原始插入顺序
3、高性能编程和调试
3.1 输出错误和警告信息
向标准错误输出信息
import syssys.stderr.write('')
输出警告信息
import warningswarnings.warn(message, category=UserWarning) # category的取值有DeprecationWarning, SyntaxWarning, RuntimeWarning, ResourceWarning, FutureWarning
控制警告消息的输出
$ python -W all # 输出所有警告,等同于设置warnings.simplefilter('always')$ python -W ignore # 忽略所有警告,等同于设置warnings.simplefilter('ignore')$ python -W error # 将所有警告转换为异常,等同于设置warnings.simplefilter('error')
3.2 代码中测试
有时为了调试,我们想在代码中加一些代码,通常是一些 print 语句,可以写为:
# 在代码中的debug部分if __debug__: pass
一旦调试结束,通过在命令行执行 -O 选项,会忽略这部分代码:
$ python -0 main.py
3.3 代码风格检查
使用 pylint 可以进行不少的代码风格和语法检查,能在运行之前发现一些错误
pylint main.py
3.4 代码耗时
耗时测试
$ python -m cProfile main.py
测试某代码块耗时
# 代码块耗时定义from contextlib import contextmanagerfrom time import perf_counter@contextmanagerdef timeblock(label): tic = perf_counter() try: yield finally: toc = perf_counter() print('%s : %s' % (label, toc - tic))# 代码块耗时测试with timeblock('counting'): pass
代码耗时优化的一些原则
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。(文末领读者福利)
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
检查学习结果。
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。 (文末领取哦)
保证100%免费
】