往期推荐:
Python数据分析(一)matplotlib基础绘图和调整x轴刻度
Python数据分析(二)matplotlib折线图应用实例——绘制10点到12点的气温
Python数据分析(三)matplotlib折线图应用实例——自定义图形风格
matplotlib能够绘制折线图、散点图、柱状图、直方图、箱线图、饼图等
如何选择哪种统计图来更直观的呈现数据?
假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温和随时间(天)变化的某种规律?
a = [11, 17, 16, 11, 12, 11, 12, 6, 6, 7, 8, 9, 12, 15, 14, 17, 18, 21, 16, 17, 20, 14, 15, 15, 15, 19, 21, 22, 22, 22, 23]
b = [26, 26, 28, 19, 21, 17, 16, 19, 18, 20, 20, 19, 22, 23, 17, 20, 21, 20, 22, 15, 11, 15, 5, 13, 17, 10, 11, 13, 12, 13, 6]
代码如下:
import numpy as np
import matplotlib
from matplotlib import pyplot as plt
import random
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/System/Library/Fonts/Supplemental/Songti.ttc", size=14)
y_3 = [11, 17, 16, 11, 12, 11, 12, 6, 6, 7, 8, 9, 12, 15, 14, 17, 18, 21, 16, 17, 20, 14, 15, 15, 15, 19, 21, 22, 22, 22, 23]
y_10 = [26, 26, 28, 19, 21, 17, 16, 19, 18, 20, 20, 19, 22, 23, 17, 20, 21, 20, 22, 15, 11, 15, 5, 13, 17, 10, 11, 13, 12, 13, 6]
x_3 = range(1, 32)
x_10 = range(49, 80)
plt.figure(figsize=(20, 8), dpi=80)
# 绘图
plt.scatter(x_3, y_3, label="3月")
plt.scatter(x_10, y_10, label="10月")
_x = list(x_3)+list(x_10)
_xticks = ["3月{}日".format(i) for i in x_3]
_xticks += ["10月{}日".format(i-50) for i in x_10]
# 刻度线
plt.xticks(_x[::3], _xticks[::3], rotation = 45, fontproperties=font)
# plt.xticks(x_10[::3], _xticks_10[::3], rotation = 45, fontproperties=font)
plt.yticks(fontproperties=font)
# 标签
plt.xlabel("月份", fontproperties=font)
plt.ylabel("温度(°c)", fontproperties=font)
plt.title("3月和10月的气温变化规律", fontproperties=font)
# 显示图例
plt.legend(prop=font)
# 显示图形
plt.show()
散点图更多应用场景:
假设你获取到了2017年内地电影票房前20的电影(列表a)和电影票房数据(列表b),那么如何更加直观的展示该数据?
a = [“战狼2”, “速度与激情8”, “功夫瑜伽”, “西游伏妖篇”, “变形金刚5:最后的骑士”, “摔跤吧!爸爸”, “加勒比海盗5:死无对证”, “金刚:骷髅岛”, “极限特工:终极回归”, “生化危机6:终章”, “乘风破浪”, “神偷奶爸3”, “智取威虎山”, “大闹天竺”, “金刚狼3:殊死-战”, “蜘蛛侠:英雄归来”, “悟空传”, “银河护卫队2”, “情圣”, “新木乃伊”]
b = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32,
6.99, 6.88, 6.86, 6.58, 6.23] 单位:亿
代码如下(示例):
_x = range(len(a))
_y = b
plt.bar(_x, b, width = 0.2)
# bar绘制竖直条形图,只能接受含数字的可迭代对象
# barh绘制横向条形图,只能接受含数字的可迭代对象
# width表示竖直条形图长条的宽度,默认为0.8
# height表示横向条形图长条的宽度,默认为0.8
plt.xticks(_x, a, fontproperties=my_font, rotation = 90)
竖直条形图
import matplotlib
from matplotlib import pyplot as plt
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/System/Library/Fonts/Supplemental/Songti.ttc", size=14)
a = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇", "变形金刚5:最后的骑士", "摔跤吧!爸爸", "加勒比海盗5:死无对证", "金刚:骷髅岛", "极限特工:终极回归", "生化危机6:终章", "乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死-战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊"]
b = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32,
6.99, 6.88, 6.86, 6.58, 6.23]
x = range(len(a))
y = b
plt.figure(figsize=(20, 8), dpi=80)
# 绘图
plt.bar(x, y, width = 0.5)
# 刻度线
plt.xticks(x, a, rotation = 45, fontproperties=font, size = 10)
plt.yticks(range(0, 60, 10), fontproperties=font)
# 标签
plt.ylabel("电影票房(单位:亿)", fontproperties=font)
plt.title("2017年内地电影票房top20", fontproperties=font)
# 显示图例
plt.legend(prop=font)
# 显示图形
plt.show()
横向条形图
import matplotlib
from matplotlib import pyplot as plt
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/System/Library/Fonts/Supplemental/Songti.ttc", size=14)
a = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇", "变形金刚5:最后的骑士", "摔跤吧!爸爸", "加勒比海盗5:死无对证", "金刚:骷髅岛", "极限特工:终极回归", "生化危机6:终章", "乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死-战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊"]
b = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32,
6.99, 6.88, 6.86, 6.58, 6.23]
x = range(len(a))
y = b
plt.figure(figsize=(20, 8), dpi=80)
# 绘图
plt.barh(x, y, height = 0.5)
# 刻度线
plt.yticks(x, a, fontproperties=font, size = 10)
plt.xticks(range(0, 60, 10), fontproperties=font)
# 标签
plt.ylabel("电影票房(单位:亿)", fontproperties=font)
plt.title("2017年内地电影票房top20", fontproperties=font)
# 显示图例
plt.legend(prop=font)
# 显示图形
plt.show()
假设你知道了列表a中电影分别在2017-09-14(b_14), 2017-09-15(b_15), 2017-09-16(b_16)三天的票房,为了展示列表中电影本身的票房以及同其他电影的数据对比情况,应该如何更加直观的呈现该数据?
a= [“猩球崛起3:终极之战”, “敦刻尔克” , “蜘蛛侠:英雄归来”, “战狼2”]
b_16 = [15746, 312, 4497, 319]
b_15 = [12357, 156, 2045, 168]
b_14 = [2358, 399, 2358, 362]
绘制多次条形图
import matplotlib
from matplotlib import pyplot as plt
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/System/Library/Fonts/Supplemental/Songti.ttc", size=14)
a = ["猩球崛起3:终极之战", "敦刻尔克", "蜘蛛侠:英雄归来", "战狼2"]
b_16 = [15746, 312, 4497, 319]
b_15 = [12357, 156, 2045, 168]
b_14 = [2358, 399, 2358, 362]
x = range(len(a))
x_14 = list(x)
x_15 = [i+0.2 for i in x_14]
x_16 = [i+0.2 for i in x_15]
plt.figure(figsize=(20, 8), dpi=80)
# 绘图
plt.bar(x_14, b_14, width=0.2, label="2017-09-14")
plt.bar(x_15, b_15, width=0.2, label="2017-09-15")
plt.bar(x_16, b_16, width=0.2, label="2017-09-16")
_xticks = a
# 刻度线
plt.xticks(x_15, _xticks, fontproperties=font)
plt.yticks(range(0, 16001, 1000), fontproperties=font)
# 标签
plt.xlabel("电影", fontproperties=font)
plt.ylabel("票房", fontproperties=font)
# 显示图例
plt.legend(prop=font)
# 显示图形
plt.show()
条形图更多应用场景:
假设你获取了250部电影的市场(列表a),希望统计出这些电影时常的分布状态(比如时长为100分钟到120分钟电影的数量,出现的频率)等信息,应该如何呈现这些数据?
a=[131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111, 78, 132, 124, 113, 150, 110, 117, 86, 95, 144, 105, 126, 130, 126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134,125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109,132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109,119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144, 83, 123, 111, 110, 111, 100, 154, 136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114,125, 126, 114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137, 92,121, 112, 146, 97, 137, 105, 98, 117, 112, 81, 97,139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110, 105, 129, 137, 112, 120, 113, 133, 112, 83, 94, 146,133, 101, 131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111, 111, 133, 150]
数据分组:
代码示例如下
bin_width = 3 # 设置组距为3
num_bins = int((max(a)-min(a))/bin_width) #分为多少组
plt.hist(a, num_bins)
# 传入需要统计的数据,以及组数即可
# plt.hist(a, [min(a)+i*bin_width for i in range(num_bins)]) 传入一个列表,长度为组数,值为分组依据,当组距不均匀的时候使用
# plt.hist(a, num_bins, density=1/True) density:bool 是否绘制频率分布直方图,默认为频数直方图
plt.xticks(list(range(min(a), max(a)))[::bid_width], rotation=45)
plt.grid(True, linestyle="-.", alpha=0.3) #显示网格,alpha为透明度
代码实例(未分组数据):
import matplotlib
from matplotlib import pyplot as plt
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/System/Library/Fonts/Supplemental/Songti.ttc", size=14)
a = [131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124,
101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111, 78, 132, 124, 113, 150, 110, 117, 86,
95, 144, 105, 126, 130, 126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136, 123, 117, 119, 105, 137,
123, 128, 125, 104, 109, 134, 125, 127, 105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114, 105, 115,
132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134, 156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102,
123, 107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133, 112, 114, 122, 109, 106, 123, 116, 131, 127,
115, 118, 112, 135, 115, 146, 137, 116, 103, 144, 83, 123, 111, 110, 111, 100, 154, 136, 100, 118, 119, 133, 134,
106, 129, 126, 110, 111, 109, 141, 120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126, 114, 140, 103,
130, 141, 117, 106, 114, 121, 114, 133, 137, 92, 121, 112, 146, 97, 137, 105, 98, 117, 112, 81, 97, 139, 113, 134,
106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110, 105, 129, 137, 112, 120, 113, 133, 112, 83, 94, 146,
133, 101, 131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111, 111, 133, 150]
# 组距
d = 3
# 组数
num = (max(a)-min(a))//d
# 设置图片大小
plt.figure(figsize=(20, 8), dpi=80)
# 绘图
plt.hist(a, num, density = True)
# 刻度线
plt.xticks(range(min(a), max(a)+d, d))
# 绘制网格
plt.grid(alpha = 0.3, linestyle = '-.')
# 显示图形
plt.show()
在美国2004年人口普查发现有124 million的人在离家相对较远的地方工作,根据他们从家到上班地点所需时间,通过抽样统计(最后一列)出了下表的数据,这些数据能够绘制成直方图吗?
interval = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 60, 90]
width = [5, 5, 5, 5, 5, 5, 5, 5, 5, 15, 30, 60]
quantity = [836, 2737, 3723, 3926, 3596, 1438, 3273, 642, 824, 613, 215, 47]
前面的问题给出的数据都是统计之后的数据,所以为了达到直方图的效果,需要绘制条形图
一般来说能够使用plt.hist方法的都是没有统计过的数据
代码实例(已分组数据):
import matplotlib
from matplotlib import pyplot as plt
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/System/Library/Fonts/Supplemental/Songti.ttc", size=14)
interval = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 60, 90]
width = [5, 5, 5, 5, 5, 5, 5, 5, 5, 15, 30, 60]
quantity = [836, 2737, 3723, 3926, 3596, 1438, 3273, 642, 824, 613, 215, 47]
x = interval + [150]
_xticks = [i-0.5 for i in range(13)]
y = quantity
plt.figure(figsize=(20, 8), dpi=80)
# 绘图
plt.bar(range(12), y, width = 1)
# 刻度线
plt.xticks(_xticks, x, fontproperties=font, size = 10)
plt.yticks(range(0, 4500, 500), fontproperties=font, size = 10)
# 标签
plt.xlabel("时间", fontproperties=font)
plt.ylabel("数量", fontproperties=font)
plt.title("从家到上班地点所需要的时间", fontproperties=font)
# 显示网格
plt.grid(alpha = 0.3)
# 显示图形
plt.show()
直方图更多应用场景: