RocketMQ三:rocketmq进阶和深入理解

文章目录

  • rocketmq进阶和深入理解
    • rocketmq读写队列
    • 消息持久化
    • 过期文件删除
    • 高效文件写
    • 消息主从复制
    • 负载均衡
    • 消息重试
    • 死信队列
    • 消息幂等

rocketmq进阶和深入理解

rocketmq读写队列

​ 在RocketMQ的管理控制台创建Topic时,可以看到要单独设置读队列和写队列。通常在运行时,都需要设置读队列=写队列。
RocketMQ三:rocketmq进阶和深入理解_第1张图片
perm字段表示Topic的权限。有三个可选项。 2:禁写禁订阅,4:可订阅,不能写,6:可写可订阅
写队列会真实的创建对应的存储文件,负责消息写入。而读队列会记录Consumer的Offset,负责消息读取。这其实是一种读写分离的思想。
所以当写队列>读队列,会造成消息丢失,写队列<读队列,又会造成消费者空转。所以,在使用时,都是要求 写队列=读队列。

消息持久化

RocketMQ消息直接采用磁盘文件保存消息,默认路径在${user_home}/store目录。这些存储目录可以在broker.conf中自行指定。
存储文件主要分为三个部分

CommitLog:存储消息的元数据。所有消息都会顺序存入到CommitLog文件当中。CommitLog由多个文件组成,每个文件固定大小1G。以第一条消息的偏移量为文件名。
ConsumerQueue:存储消息在CommitLog的索引。一个MessageQueue一个文件,记录当前MessageQueue被哪些消费者组消费到了哪一条CommitLog。
IndexFile:为了消息查询提供了一种通过key或时间区间来查询消息的方法,这种通过IndexFile来查找消息的方法不影响发送与消费消息的主流程

另外,还有几个辅助的存储文件

checkpoint:数据存盘检查点。里面主要记录commitlog文件、ConsumeQueue文件以及IndexFile文件最后一次刷盘的时间戳。
config/*.json:这些文件是将RocketMQ的一些关键配置信息进行存盘保存。例如Topic配置、消费者组配置、消费者组消息偏移量Offset 等等一些信息。
abort:这个文件是RocketMQ用来判断程序是否正常关闭的一个标识文件。正常情况下,会在启动时创建,而关闭服务时删除。但是如果遇到一些服务器宕机,或者kill -9这样一些非正常关闭服务的情况,这个abort文件就不会删除,因此RocketMQ就可以判断上一次服务是非正常关闭的,后续就会做一些数据恢复的操作

整体的消息存储结构如下图:
RocketMQ三:rocketmq进阶和深入理解_第2张图片
CommitLog文件存储所有消息实体。所有生产者发过来的消息,都会无差别的依次存储到Commitlog文件当中。这样的好处是可以减少查找目标文件的时间,让消息以最快的速度落盘。CommitLog的文件大小是固定的,但是其中存储的每个消息单元长度是不固定的。正因为消息的记录大小不固定,所以RocketMQ在每次存CommitLog文件时,都会去检查当前CommitLog文件空间是否足够,如果不够的话,就重新创建一个CommitLog文件。文件名为当前消息的偏移量

ConsumeQueue文件主要是加速消费的消息索引。他的每个文件夹对应RocketMQ中的一个MessageQueue,文件夹下的文件记录了每个MessageQueue中的消息在CommitLog文件当中的偏移量。这样,消费者通过ComsumeQueue文件,就可以快速找到CommitLog文件中感兴趣的消息记录。ConsumeQueue记录了 最大位点和最小位点还有标签的hash值。
在这里插入图片描述
而消费者在ConsumeQueue文件当中的消费进度,会保存在config/consumerOffset.json文件当中。
在这里插入图片描述
每个ConsumeQueue文件固定由30万个固定大小20byte的数据块组成,数据块的内容包括:msgPhyOffset(8byte,消息在文件中的起始位置)+msgSize(4byte,消息在文件中占用的长度)+msgTagCode(8byte,消息的tag的Hash值)。
​ 在ConsumeQueue.java当中有一个常量CQ_STORE_UNIT_SIZE=20,这个常量就表示一个数据块的大小。

IndexFile文件主要是辅助消息检索。消费者进行消息消费时,通过ConsumeQueue文件就足够完成消息检索了,但是如果要按照MeessageId或者MessageKey来检索文件,比如RocketMQ管理控制台的消息轨迹功能,ConsumeQueue文件就不够用了。IndexFile文件就是用来辅助这类消息检索的。他的文件名比较特殊,不是以消息偏移量命名,而是用的时间命名。但是其实,他也是一个固定大小的文件。
文件结构由 indexHeader(固定40byte)+ slot(固定500W个,每个固定20byte) + index(最多500W*4个,每个固定20byte) 三个部分组成。

过期文件删除

​ 消息既然要持久化,就必须有对应的删除机制。RocketMQ内置了一套过期文件的删除机制。
如何判断过期文件:
​ RocketMQ中,CommitLog文件和ConsumeQueue文件都是以偏移量命名,对于非当前写的文件,如果超过了一定的保留时间,那么这些文件都会被认为是过期文件,随时可以删除。这个保留时间就是在broker.conf中配置的fileReservedTime属性。

#删除文件时间点,默认凌晨 4点
deleteWhen=04
#文件保留时间,默认 48 小时
fileReservedTime=120

​ 注意,RocketMQ判断文件是否过期的唯一标准就是非当前写文件的保留时间,而并不关心文件当中的消息是否被消费过。所以,RocketMQ的消息堆积也是有时间限度的。

何时删除过期文件
​ RocketMQ内部有一个定时任务,对文件进行扫描,并且触发文件删除的操作。用户可以指定文件删除操作的执行时间。在broker.conf中deleteWhen属性指定。默认是凌晨四点。
​ 另外,RocketMQ还会检查服务器的磁盘空间是否足够,如果磁盘空间的使用率达到一定的阈值,也会触发过期文件删除。所以RocketMQ官方就特别建议,broker的磁盘空间不要少于4G。

高效文件写

RocketMQ采用了类似于Kafka的文件存储机制,但是文件存储是一个比较重的操作,需要有非常多的设计才能保证频繁的文件读写场景下的高性能。
零拷贝(zero-copy)
零拷贝(zero-copy)是操作系统层面提供的一种加速文件读写的操作机制,非常多的开源软件都在大量使用零拷贝,来提升IO操作的性能。对于Java应用层,对应着mmap和sendFile两种方式。对于 零拷贝在netty中在分析
顺序写加速文件写入磁盘
通常应用程序往磁盘写文件时,由于磁盘空间不是连续的,会有很多碎片。所以我们去写一个文件时,也就无法把一个文件写在一块连续的磁盘空间中,而需要在磁盘多个扇区之间进行大量的随机写。这个过程中有大量的寻址操作,会严重影响写数据的性能。而顺序写机制是在磁盘中提前申请一块连续的磁盘空间,每次写数据时,就可以避免这些寻址操作,直接在之前写入的地址后面接着写就行。
Kafka官方详细分析过顺序写的性能提升问题。Kafka官方曾说明,顺序写的性能基本能够达到内存级别。而如果配备固态硬盘,顺序写的性能甚至有可能超过写内存。而RocketMQ很大程度上借鉴了Kafka的这种思想。
刷盘机制保证消息不丢失
​在操作系统层面,当应用程序写入一个文件时,文件内容并不会直接写入到硬件当中,而是会先写入到操作系统中的一个缓存PageCache中。PageCache缓存以4K大小为单位,缓存文件的具体内容。这些写入到PageCache中的文件,在应用程序看来,是已经完全落盘保存好了的,可以正常修改、复制等等。但是,本质上,PageCache依然是内存状态,所以一断电就会丢失。因此,需要将内存状态的数据写入到磁盘当中,这样数据才能真正完成持久化,断电也不会丢失。这个过程就称为刷盘。
PageCache是源源不断产生的,而Linux操作系统显然不可能时时刻刻往硬盘写文件。所以,操作系统只会在某些特定的时刻将PageCache写入到磁盘。例如当我们正常关机时,就会完成PageCache刷盘。另外,在Linux中,对于有数据修改的PageCache,会标记为Dirty(脏页)状态。当Dirty Page的比例达到一定的阈值时,就会触发一次刷盘操作。

RocketMQ对于刷盘提供了两种机制:同步刷盘和异步刷盘
RocketMQ三:rocketmq进阶和深入理解_第3张图片
同步刷盘:
在返回写成功状态时,消息已经被写入磁盘。具体流程是,消息写入内存的PAGECACHE后,立刻通知刷盘线程刷盘, 然后等待刷盘完成,刷盘线程执行完成后唤醒等待的线程,返回消息写 成功的状态。

异步刷盘:
在返回写成功状态时,消息可能只是被写入了内存的PAGECACHE,写操作的返回快,吞吐量大;当内存里的消息量积累到一定程度时,统一触发写磁盘动作,快速写入。

配置方式:
刷盘方式是通过Broker配置文件里的flushDiskType 参数设置的,这个参数被配置成SYNC_FLUSH、ASYNC_FLUSH中的 一个。

很明显同步刷盘机制吞吐量相比异步刷盘会降低,但是数据的安全性会得到提高。

消息主从复制

如果Broker以一个集群的方式部署,会有一个master节点和多个slave节点,消息需要从Master复制到Slave上。而消息复制的方式分为同步复制和异步复制。
同步复制:
同步复制是等Master和Slave都写入消息成功后才反馈给客户端写入成功的状态。
在同步复制下,如果Master节点故障,Slave上有全部的数据备份,这样容易恢复数据。但是同步复制会增大数据写入的延迟,降低系统的吞吐量。

异步复制:
异步复制是只要master写入消息成功,就反馈给客户端写入成功的状态。然后再异步的将消息复制给Slave节点。
在异步复制下,系统拥有较低的延迟和较高的吞吐量。但是如果master节点故障,而有些数据没有完成复制,就会造成数据丢失。
配置方式:
消息复制方式是通过Broker配置文件里的brokerRole参数进行设置的,这个参数可以被设置成ASYNC_MASTER、 SYNC_MASTER、SLAVE三个值中的一个。

负载均衡

​ Producer发送消息时,默认会轮询目标Topic下的所有MessageQueue,并采用递增取模的方式往不同的MessageQueue上发送消息,以达到让消息平均落在不同的queue上的目的。而由于MessageQueue是分布在不同的Broker上的,所以消息也会发送到不同的broker上。
同时生产者在发送消息时,可以指定一个MessageQueueSelector。通过这个对象来将消息发送到自己指定的MessageQueue上。这样可以保证消息局部有序。
Consumer在消费的时候也会进行负载均衡,Consumer以MessageQueue为单位来进行负载均衡,分为集群模式和广播模式。
​ 广播模式
​广播模式下,每一条消息都会投递给订阅了Topic的所有消费者实例,所以在广播模式下并没有体现出负载均衡。
​ 广播模式实现的关键是将消费者的消费偏移量不再保存到broker当中,而是保存到客户端当中,由客户端自行维护自己的消费偏移量
集群模式
在集群消费模式下,每条消息只需要投递到消费者组下的一个实例即可,rocketmq在推送消息的时候需要知道要推送到那个实例,因此rocketmq会按照queue的数量和实例的数量平均分配queue给每个实例。这种分配就是负载均衡
RocketMQ三:rocketmq进阶和深入理解_第4张图片
而每当实例的数量有变更,都会触发一次所有实例的负载均衡。每次分配时,都会将MessageQueue和消费者ID进行排序后,再用不同的分配算法进行分配。内置的分配的算法共有六种,分别对应AllocateMessageQueueStrategy下的六种实现类,可以在consumer中直接set来指定。默认情况下使用的是最简单的平均分配策略。
其他分配策略在下一篇源码中分析

消息重试

​ 首先对于广播模式的消息, 是不存在消息重试的机制的,即消息消费失败后,不会再重新进行发送,而只是继续消费新的消息。而对于普通的消息,当消费者消费消息失败后,你可以通过设置返回状态达到消息重试的结果。
springboot方式抛出异常时消息会进行重试
RocketMQ三:rocketmq进阶和深入理解_第5张图片
因为onMessage本身没有返回值,在处理业务时,可以通过主动抛出异常来处理需要重试的消息。

原生API使用时,返回ConsumeConcurrentlyStatus.RECONSUME_LATER或者抛出异常时,重试消息
RocketMQ三:rocketmq进阶和深入理解_第6张图片
重试的消息会进入一个 “%RETRY%”+ConsumeGroup 的队列中。
在这里插入图片描述
RocketMQ默认允许每条消息最多重试16次,每次重试的间隔时间如下:
RocketMQ三:rocketmq进阶和深入理解_第7张图片
重试次数:
如果消息重试16次后仍然失败,消息将不再投递。转为进入死信队列。
另外一条消息无论重试多少次,这些重试消息的MessageId始终都是一样的。但是在4.9.1版本中,每次重试MessageId都会重建。
然后关于这个重试次数,RocketMQ可以进行定制。例如通过consumer.setMaxReconsumeTimes(20);将重试次数设定为20次。当定制的重试次数超过16次后,消息的重试时间间隔均为2小时。

死信队列

​ 当一条消息消费失败,RocketMQ就会自动进行消息重试。而如果消息超过最大重试次数,RocketMQ就会认为这个消息有问题。但是此时,RocketMQ不会立刻将这个有问题的消息丢弃,而会将其发送到这个消费者组对应的一种特殊队列:死信队列。
死信队列的名称是%DLQ%+ConsumGroupRocketMQ三:rocketmq进阶和深入理解_第8张图片
死信队列的特征:

  • 一个死信队列对应一个消费者组,而不是对应某个消费者实例。
  • 如果一个ConsumeGroup没有产生死信消息,RocketMQ就不会为其创建相应的死信队列。
  • 一个死信队列包含了这个ConsumeGroup里的所有死信消息,而不区分该消息属于哪个Topic。
  • 死信队列中的消息不会再被消费者正常消费。死信队列的有效期跟正常消息相同。默认3天,对应broker.conf中的fileReservedTime属性。超过这个最长时间的消息都会被删除,而不管消息是否消费过。

通常,一条消息进入了死信队列,意味着消息在消费处理的过程中出现了比较严重的错误,并且无法自行恢复。此时,一般需要人工去查看死信队列中的消息,对错误原因进行排查。然后对死信消息进行处理,比如转发到正常的Topic重新进行消费,或者丢弃。

默认创建出来的死信队列,他里面的消息是无法读取的,在控制台和消费者中都无法读取。这是因为这些默认的死信队列,他们的权限perm被设置成了2:禁读(这个权限有三种 2:禁读,4:禁写,6:可读可写)。
需要手动将死信队列的权限配置成6,才能被消费(可以通过mqadmin指定或者web控制台)。

RocketMQ三:rocketmq进阶和深入理解_第9张图片
如何消费私信队列
将权限设置为6,像普通队列一样,创建消费者监听该队列
通过

消息幂等

在MQ系统中,对于消息幂等有三种实现语义:

  • at most once 最多一次:每条消息最多只会被消费一次
  • at least once 至少一次:每条消息至少消息幂等会被消费一次
  • exactly once 刚刚好一次:每条消息都只会确定的消费一次

exactly once是MQ中最理想也是最难保证的一种语义,需要有非常精细的设计才行。RocketMQ只能保证at least once,保证不了exactly once。所以,使用RocketMQ时,需要由业务系统自行保证消息的幂等性。阿里云上的商业版RocketMQ是明确有API支持的,至于如何实现的,就不得而知了。
消息幂等的必要性
在互联网应用中,尤其在网络不稳定的情况下,消息队列 RocketMQ 的消息有可能会出现重复,这个重复简单可以概括为以下情况:

  • 发送时消息重复
    当一条消息已被成功发送到服务端并完成持久化,此时出现了网络闪断或者客户端宕机,导致服务端对客户端应答失败。 如果此时生产者意识到消息发送失败并尝试再次发送消息,消费者后续会收到两条内容相同并且 Message ID 也相同的消息
  • 投递时消息重复
    消息消费的场景下,消息已投递到消费者并完成业务处理,当客户端给服务端反馈应答的时候网络闪断。 为了保证消息至少被消费一次,消息队列 RocketMQ 的服务端将在网络恢复后再次尝试投递之前已被处理过的消息,消费者后续会收到两条内容相同并且 Message ID 也相同的消息。
  • 负载均衡时消息重复(包括但不限于网络抖动、Broker 重启以及订阅方应用重启)
    当消息队列 RocketMQ 的 Broker 或客户端重启、扩容或缩容时,会触发Rebalance,此时消费者可能会收到重复消息。

处理方式
从上面的分析中,我们知道,在RocketMQ中,是无法保证每个消息只被投递一次的,所以要在业务上自行来保证消息消费的幂等性。
而要处理这个问题,RocketMQ的每条消息都有一个唯一的MessageId,这个参数在多次投递的过程中是不会改变的,所以业务上可以用这个MessageId来作为判断幂等的关键依据。
但是,这个MessageId是无法保证全局唯一的,也会有冲突的情况。所以在一些对幂等性要求严格的场景,最好是使用业务上唯一的一个标识比较靠谱。例如订单ID。而这个业务标识可以使用Message的Key来进行传递。
生产者
在这里插入图片描述
消费者
RocketMQ三:rocketmq进阶和深入理解_第10张图片

你可能感兴趣的:(消息中间件,java-rocketmq,rocketmq,java)