(1)传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图:
存在下面的问题:
•请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈
•Redis缓存失效时,会对数据库产生冲击
(2)多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能:
(3)因此这样的业务Nginx服务也需要搭建集群来提高并发,再有专门的nginx服务来做反向代理。另外,我们的Tomcat服务将来也会部署为集群模式:
一个是在nginx中编写业务,实现nginx本地缓存、Redis、Tomcat的查询
另一个就是在Tomcat中实现JVM进程缓存
其中Nginx编程则会用到OpenResty框架结合Lua这样的语言。
(1)后期做数据同步需要用到MySQL的主从功能,所以需要大家在虚拟机中,利用Docker来运行一个MySQL容器。
# 进入/tmp目录
cd /tmp
# 创建文件夹
mkdir mysql
# 进入mysql目录
cd mysql
(2)进入mysql目录后,执行下面的Docker命令(没有mysql镜像会自动下载并运行容器):
docker run \
-p 3306:3306 \
--name mysql \
-v $PWD/conf:/etc/mysql/conf.d \
-v $PWD/logs:/logs \
-v $PWD/data:/var/lib/mysql \
-e MYSQL_ROOT_PASSWORD=123 \
--privileged \
-d \
mysql:5.7.25
(3)查看容器
docker ps
(1)在/tmp/mysql/conf目录添加一个my.cnf文件,作为mysql的配置文件:
# 创建文件
touch /tmp/mysql/conf/my.cnf
(2)文件的内容如下:
[mysqld]
skip-name-resolve
character_set_server=utf8
datadir=/var/lib/mysql
server-id=1000
(3)配置修改后,必须重启容器:
docker restart mysql
利用Navicat客户端连接MySQL,然后导入sql文件:
-- ----------------------------
-- Table structure for tb_item
-- ----------------------------
DROP TABLE IF EXISTS `tb_item`;
CREATE TABLE `tb_item` (
`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '商品id',
`title` varchar(264) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '商品标题',
`name` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL DEFAULT '' COMMENT '商品名称',
`price` bigint(20) NOT NULL COMMENT '价格(分)',
`image` varchar(200) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '商品图片',
`category` varchar(200) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '类目名称',
`brand` varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '品牌名称',
`spec` varchar(200) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '规格',
`status` int(1) NULL DEFAULT 1 COMMENT '商品状态 1-正常,2-下架,3-删除',
`create_time` datetime NULL DEFAULT NULL COMMENT '创建时间',
`update_time` datetime NULL DEFAULT NULL COMMENT '更新时间',
PRIMARY KEY (`id`) USING BTREE,
INDEX `status`(`status`) USING BTREE,
INDEX `updated`(`update_time`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 50002 CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '商品表' ROW_FORMAT = COMPACT;
-- ----------------------------
-- Records of tb_item
-- ----------------------------
INSERT INTO `tb_item` VALUES (10001, 'RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4', 'SALSA AIR', 16900, 'https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp', '拉杆箱', 'RIMOWA', '{\"颜色\": \"红色\", \"尺码\": \"26寸\"}', 1, '2019-05-01 00:00:00', '2019-05-01 00:00:00');
INSERT INTO `tb_item` VALUES (10002, '安佳脱脂牛奶 新西兰进口轻欣脱脂250ml*24整箱装*2', '脱脂牛奶', 68600, 'https://m.360buyimg.com/mobilecms/s720x720_jfs/t25552/261/1180671662/383855/33da8faa/5b8cf792Neda8550c.jpg!q70.jpg.webp', '牛奶', '安佳', '{\"数量\": 24}', 1, '2019-05-01 00:00:00', '2019-05-01 00:00:00');
INSERT INTO `tb_item` VALUES (10003, '唐狮新品牛仔裤女学生韩版宽松裤子 A款/中牛仔蓝(无绒款) 26', '韩版牛仔裤', 84600, 'https://m.360buyimg.com/mobilecms/s720x720_jfs/t26989/116/124520860/644643/173643ea/5b860864N6bfd95db.jpg!q70.jpg.webp', '牛仔裤', '唐狮', '{\"颜色\": \"蓝色\", \"尺码\": \"26\"}', 1, '2019-05-01 00:00:00', '2019-05-01 00:00:00');
INSERT INTO `tb_item` VALUES (10004, '森马(senma)休闲鞋女2019春季新款韩版系带板鞋学生百搭平底女鞋 黄色 36', '休闲板鞋', 10400, 'https://m.360buyimg.com/mobilecms/s720x720_jfs/t1/29976/8/2947/65074/5c22dad6Ef54f0505/0b5fe8c5d9bf6c47.jpg!q70.jpg.webp', '休闲鞋', '森马', '{\"颜色\": \"白色\", \"尺码\": \"36\"}', 1, '2019-05-01 00:00:00', '2019-05-01 00:00:00');
INSERT INTO `tb_item` VALUES (10005, '花王(Merries)拉拉裤 M58片 中号尿不湿(6-11kg)(日本原装进口)', '拉拉裤', 38900, 'https://m.360buyimg.com/mobilecms/s720x720_jfs/t24370/119/1282321183/267273/b4be9a80/5b595759N7d92f931.jpg!q70.jpg.webp', '拉拉裤', '花王', '{\"型号\": \"XL\"}', 1, '2019-05-01 00:00:00', '2019-05-01 00:00:00');
-- ----------------------------
-- Table structure for tb_item_stock
-- ----------------------------
DROP TABLE IF EXISTS `tb_item_stock`;
CREATE TABLE `tb_item_stock` (
`item_id` bigint(20) NOT NULL COMMENT '商品id,关联tb_item表',
`stock` int(10) NOT NULL DEFAULT 9999 COMMENT '商品库存',
`sold` int(10) NOT NULL DEFAULT 0 COMMENT '商品销量',
PRIMARY KEY (`item_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci ROW_FORMAT = COMPACT;
-- ----------------------------
-- Records of tb_item_stock
-- ----------------------------
INSERT INTO `tb_item_stock` VALUES (10001, 99996, 3219);
INSERT INTO `tb_item_stock` VALUES (10002, 99999, 54981);
INSERT INTO `tb_item_stock` VALUES (10003, 99999, 189);
INSERT INTO `tb_item_stock` VALUES (10004, 99999, 974);
INSERT INTO `tb_item_stock` VALUES (10005, 99999, 18649);
SET FOREIGN_KEY_CHECKS = 1;
之所以将库存分离出来,是因为库存是更新比较频繁的信息,写操作较多。而其他信息修改的频率非常低。
nginx -s reload
现在,页面是假数据展示的。我们需要向服务器发送ajax请求,查询商品数据。
修改nginx.conf文件:
#user nobody;
worker_processes 1;
events {
worker_connections 1024;
}
http {
include mime.types;
default_type application/octet-stream;
sendfile on;
#tcp_nopush on;
keepalive_timeout 65;
upstream nginx-cluster{
server 192.168.136.160:8081;
}
server {
listen 80;
server_name localhost;
location /api {
proxy_pass http://nginx-cluster;
}
location / {
root html;
index index.html index.htm;
}
error_page 500 502 503 504 /50x.html;
location = /50x.html {
root html;
}
}
}
其中的192.168.136.160是我的虚拟机IP,也就是我的Nginx业务集群要部署的地方:
重启:
nginx -s reload
(1)缓存在日常开发中启动至关重要的作用,由于是存储在内存中,数据的读取速度是非常快的,能大量减少对数据库的访问,减少数据库的压力。我们把缓存分为两类:
我们今天会利用Caffeine框架来实现JVM进程缓存。
(2)Caffeine是一个基于Java8开发的,提供了近乎最佳命中率的高性能的本地缓存库。目前Spring内部的缓存使用的就是Caffeine。GitHub地址:https://github.com/ben-manes/caffeine
(1)存和取
@Test
void testBasicOps() {
// 创建缓存对象
Cache<String, String> cache = Caffeine.newBuilder().build();
// 存数据
cache.put("RZ", "Naruto");
// 取数据方式一,不存在则返回null
String rz1 = cache.getIfPresent("RZ");
System.out.println("RZ1 = " + rz1);
// 取数据方式二(推荐),不存在则去数据库查询
// 参数一:缓存的key
// 参数二:Lambda表达式,表达式参数就是缓存的key,方法体是查询数据库的逻辑
// 优先根据key查询JVM缓存,如果未命中,则执行参数二的Lambda表达式
String rz2 = cache.get("RZ", key -> {
// 这里可以去数据库根据 key查询value
return "Naruto";
});
System.out.println("RZ2 = " + rz2);
}
(2)清除缓存
Caffeine既然是缓存的一种,肯定需要有缓存的清除策略,不然的话内存总会有耗尽的时候。
Caffeine提供了三种缓存驱逐策略:
基于容量:设置缓存的数量上限
// 创建缓存对象
Cache<String, String> cache = Caffeine.newBuilder()
.maximumSize(1) // 设置缓存大小上限为 1
.build();
基于时间:设置缓存的有效时间
// 创建缓存对象
Cache<String, String> cache = Caffeine.newBuilder()
// 设置缓存有效期为 10 秒,从最后一次写入开始计时
.expireAfterWrite(Duration.ofSeconds(10))
.build();
基于引用:设置缓存为软引用或弱引用,利用GC来回收缓存数据。性能较差,不建议使用。
注意:在默认情况下,当一个缓存元素过期的时候,Caffeine不会自动立即将其清理和驱逐。而是在一次读或写操作后,或者在空闲时间完成对失效数据的驱逐。
(1)需求
利用Caffeine实现下列需求:
(2)导入依赖
<dependency>
<groupId>com.github.ben-manes.caffeine</groupId>
<artifactId>caffeine</artifactId>
</dependency>
(3)实现
首先,我们需要定义两个Caffeine的缓存对象,分别保存商品、库存的缓存数据。
在item-service的com.heima.item.config
包下定义CaffeineConfig
类:
@Configuration
public class CaffeineConfig {
@Bean
public Cache<Long, Item> itemCache(){
return Caffeine.newBuilder()
.initialCapacity(100)
.maximumSize(10_000)
.build();
}
@Bean
public Cache<Long, ItemStock> stockCache(){
return Caffeine.newBuilder()
.initialCapacity(100)
.maximumSize(10_000)
.build();
}
}
然后,修改item-service中的com.heima.item.web
包下的ItemController类,添加缓存逻辑(别导错包了啊):
@GetMapping("/{id}")
public Item findById(@PathVariable("id") Long id) {
return itemCache.get(id,key->itemService.query()
.ne("status",3).eq("id",key).one());
}
@GetMapping("/stock/{id}")
public ItemStock findStockById(@PathVariable("id") Long id) {
return stockCache.get(id, key-> stockService.getById(key));
}
Nginx编程需要用到Lua语言,因此我们必须先入门Lua的基本语法。
Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。官网:https://www.lua.org/
Lua经常嵌入到C语言开发的程序中,例如游戏开发、游戏插件等。
Nginx本身也是C语言开发,因此也允许基于Lua做拓展。
CentOS7默认已经安装了Lua语言环境,所以可以直接运行Lua代码。
另外,Lua提供了type()函数来判断一个变量的数据类型。
OpenResty® 是一个基于 Nginx的高性能 Web 平台,用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。具备下列特点:
首先你的Linux虚拟机必须联网,然后安装OpenResty的依赖开发库,执行命令:
yum install -y pcre-devel openssl-devel gcc --skip-broken
你可以在你的 CentOS 系统中添加 openresty
仓库,这样就可以便于未来安装或更新我们的软件包(通过 yum check-update
命令)。运行下面的命令就可以添加我们的仓库:
yum-config-manager --add-repo https://openresty.org/package/centos/openresty.repo
如果提示说命令不存在,则先运行:
yum install -y yum-utils
然后就可以像下面这样安装软件包,比如 openresty
:
yum install -y openresty
opm是OpenResty的一个管理工具,可以帮助我们安装一个第三方的Lua模块。
如果你想安装命令行工具 opm
,那么可以像下面这样安装 openresty-opm
包:
yum install -y openresty-opm
里面有个nginx目录,OpenResty就是在Nginx基础上集成了一些Lua模块。
打开配置文件:
vi /etc/profile
在最下面加入两行:
export NGINX_HOME=/usr/local/openresty/nginx
export PATH=${NGINX_HOME}/sbin:$PATH
NGINX_HOME:后面是OpenResty安装目录下的nginx的目录
然后让配置生效:
source /etc/profile
OpenResty底层是基于Nginx的,查看OpenResty目录的nginx目录,结构与windows中安装的nginx基本一致:
所以运行方式与nginx基本一致:
# 启动nginx
nginx
# 重新加载配置
nginx -s reload
# 停止
nginx -s stop
nginx的默认配置文件注释太多,影响后续我们的编辑,这里将nginx.conf中的注释部分删除,保留有效部分。
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,内容如下:
#user nobody;
worker_processes 1;
error_log logs/error.log;
events {
worker_connections 1024;
}
http {
include mime.types;
default_type application/octet-stream;
sendfile on;
keepalive_timeout 65;
server {
listen 8081;
server_name localhost;
location / {
root html;
index index.html index.htm;
}
error_page 500 502 503 504 /50x.html;
location = /50x.html {
root html;
}
}
}
在Linux的控制台输入命令以启动nginx:
nginx
然后访问页面:http://192.168.136.160:8081,注意ip地址替换为你自己的虚拟机IP:
关闭:
nginx -s stop
加载OpenResty的lua模块:
#lua 模块
lua_package_path "/usr/local/openresty/lualib/?.lua;;";
#c模块
lua_package_cpath "/usr/local/openresty/lualib/?.so;;";
common.lua
-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
local resp = ngx.location.capture(path,{
method = ngx.HTTP_GET,
args = params,
})
if not resp then
-- 记录错误信息,返回404
ngx.log(ngx.ERR, "http not found, path: ", path , ", args: ", args)
ngx.exit(404)
end
return resp.body
end
-- 将方法导出
local _M = {
read_http = read_http
}
return _M
释放Redis连接API:
-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
local pool_size = 100 --连接池大小
local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
if not ok then
ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
end
end
读取Redis数据的API:
-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
-- 获取一个连接
local ok, err = red:connect(ip, port)
if not ok then
ngx.log(ngx.ERR, "连接redis失败 : ", err)
return nil
end
-- 查询redis
local resp, err = red:get(key)
-- 查询失败处理
if not resp then
ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
end
--得到的数据为空处理
if resp == ngx.null then
resp = nil
ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
end
close_redis(red)
return resp
end
开启共享词典:
# 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m
lua_shared_dict item_cache 150m;
windows上的nginx用来做反向代理服务,将前端的查询商品的ajax请求代理到OpenResty集群
OpenResty的很多功能都依赖于其目录下的Lua库,需要在nginx.conf中指定依赖库的目录,并导入依赖:
(1)添加对OpenResty的Lua模块的加载
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,在其中的http下面,添加下面代码:
#lua 模块
lua_package_path "/usr/local/openresty/lualib/?.lua;;";
#c模块
lua_package_cpath "/usr/local/openresty/lualib/?.so;;";
(2)监听/api/item路径
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,在nginx.conf的server下面,添加对/api/item这个路径的监听:
location /api/item {
# 默认的响应类型
default_type application/json;
# 响应结果由lua/item.lua文件来决定
content_by_lua_file lua/item.lua;
}
这个监听,就类似于SpringMVC中的@GetMapping("/api/item")
做路径映射。
而content_by_lua_file lua/item.lua
则相当于调用item.lua这个文件,执行其中的业务,把结果返回给用户。相当于java中调用service。
(1)在/usr/loca/openresty/nginx
目录创建文件夹:lua
mkdir lua
(2)在/usr/loca/openresty/nginx/lua
文件夹下,新建文件:item.lua
touch item.lua
(3)编写item.lua,返回假数据
ngx.say('{"id":10001,"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')
(4)重新加载配置
nginx -s reload
要返回真实数据,必须根据前端传递来的商品id,查询商品信息才可以。
OpenResty中提供了一些API用来获取不同类型的前端请求参数:
在前端发起的ajax请求如图:
(1)可以看到商品id是以路径占位符方式传递的,因此可以利用正则表达式匹配的方式来获取ID
修改/usr/loca/openresty/nginx/nginx.conf
文件中监听/api/item的代码,利用正则表达式获取ID:
location ~ /api/item/(\d+) {
# 默认的响应类型
default_type application/json;
# 响应结果由lua/item.lua文件来决定
content_by_lua_file lua/item.lua;
}
(2)拼接ID并返回
修改/usr/loca/openresty/nginx/lua/item.lua
文件,获取id并拼接到结果中返回:
-- 获取商品id
local id = ngx.var[1]
-- 拼接并返回
ngx.say('{"id":' .. id .. ',"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')
(3)重新加载并测试
运行命令以重新加载OpenResty配置:
nginx -s reload
拿到商品ID后,本应去缓存中查询商品信息,不过目前我们还未建立nginx、redis缓存。因此,这里我们先根据商品id去tomcat查询商品信息。我们实现如图部分:
需要注意的是,我们的OpenResty是在虚拟机,Tomcat是在Windows电脑上。两者IP一定不要搞错了。
所以Windows的IP与虚拟机IP前3位保持一致,处于同一子网中即可。
nginx提供了内部API用以发送http请求:
local resp = ngx.location.capture("/path",{
method = ngx.HTTP_GET, -- 请求方式
args = {a=1,b=2}, -- get方式传参数
})
返回的响应内容包括:
注意:这里的path是路径,并不包含IP和端口。这个请求会被nginx内部的server监听并处理。
但是我们希望这个请求发送到Tomcat服务器,所以还需要编写一个server来对这个路径做反向代理:
location /path {
# 这里是windows电脑的ip和Java服务端口,需要确保windows防火墙处于关闭状态
proxy_pass http://192.168.150.1:8081;
}
下面,我们封装一个发送Http请求的工具,基于ngx.location.capture来实现查询tomcat。
(1)添加反向代理,到windows的Java服务
因为item-service中的接口都是/item开头,所以我们监听/item路径,代理到windows上的tomcat服务。
修改 /usr/local/openresty/nginx/conf/nginx.conf
文件,添加一个location:
location /item {
proxy_pass http://192.168.136.1:8081;
}
以后,只要我们调用ngx.location.capture("/item")
,就一定能发送请求到windows的tomcat服务。
(2)封装工具类
之前我们说过,OpenResty启动时会加载以下两个目录中的工具文件:
所以,自定义的http工具也需要放到这个目录下。
在/usr/local/openresty/lualib
目录下,新建一个common.lua文件:
-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
local resp = ngx.location.capture(path,{
method = ngx.HTTP_GET,
args = params,
})
if not resp then
-- 记录错误信息,返回404
ngx.log(ngx.ERR, "http请求查询失败, path: ", path , ", args: ", args)
ngx.exit(404)
end
return resp.body
end
-- 将方法导出
local _M = {
read_http = read_http
}
return _M
这个工具将read_http函数封装到_M这个table类型的变量中,并且返回,这类似于导出。
使用的时候,可以利用require('common')
来导入该函数库,这里的common是函数库的文件名。
(3)实现商品查询
最后,我们修改/usr/local/openresty/lua/item.lua
文件,利用刚刚封装的函数库实现对tomcat的查询:
-- 引入自定义common工具模块,返回值是common中返回的 _M
local common = require("common")
-- 从 common中获取read_http这个函数
local read_http = common.read_http
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)
这里查询到的结果是json字符串,并且包含商品、库存两个json字符串,页面最终需要的是把两个json拼接为一个json:
这就需要我们先把JSON变为lua的table,完成数据整合后,再转为JSON。
OpenResty提供了一个cjson的模块用来处理JSON的序列化和反序列化。
官方地址:https://github.com/openresty/lua-cjson/
(1)引入cjson模块:
local cjson = require "cjson"
(2)序列化:
local obj = {
name = 'jack',
age = 21
}
-- 把 table 序列化为 json
local json = cjson.encode(obj)
(3)反序列化:
local json = '{"name": "jack", "age": 21}'
-- 反序列化 json为 table
local obj = cjson.decode(json);
print(obj.name)
我们修改之前的item.lua中的业务,添加json处理功能:
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
-- 导入cjson库
local cjson = require('cjson')
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)
-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(itemStockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold
-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))
刚才的代码中,我们的tomcat是单机部署。而实际开发中,tomcat一定是集群模式:
因此,OpenResty需要对tomcat集群做负载均衡。
而默认的负载均衡规则是轮询模式,当我们查询/item/10001时:
你看,因为轮询的原因,第一次查询8081形成的JVM缓存并未生效,直到下一次再次访问到8081时才可以生效,缓存命中率太低了。
怎么办?
如果能让同一个商品,每次查询时都访问同一个tomcat服务,那么JVM缓存就一定能生效了。
也就是说,我们需要根据商品id做负载均衡,而不是轮询。
(1)原理
nginx提供了基于请求路径做负载均衡的算法:
nginx根据请求路径做hash运算,把得到的数值对tomcat服务的数量取余,余数是几,就访问第几个服务,实现负载均衡。
例如:
只要id不变,每次hash运算结果也不会变,那就可以保证同一个商品,一直访问同一个tomcat服务,确保JVM缓存生效。
(2)实现
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,实现基于ID做负载均衡。
首先,定义tomcat集群,并设置基于路径做负载均衡:
upstream tomcat-cluster {
hash $request_uri;
server 192.168.136.1:8081;
server 192.168.136.1:8082;
}
然后,修改对tomcat服务的反向代理,目标指向tomcat集群:
location /item {
proxy_pass http://tomcat-cluster;
}
重新加载OpenResty
nginx -s reload
(3)测试
启动两台tomcat服务:
清空日志后,再次访问页面,可以看到不同id的商品,访问到了不同的tomcat服务
Redis缓存会面临冷启动问题:
冷启动:服务刚刚启动时,Redis中并没有缓存,如果所有商品数据都在第一次查询时添加缓存,可能会给数据库带来较大压力。
缓存预热:在实际开发中,我们可以利用大数据统计用户访问的热点数据,在项目启动时将这些热点数据提前查询并保存到Redis中。
我们数据量较少,并且没有数据统计相关功能,目前可以在启动时将所有数据都放入缓存中。
(1)利用Docker安装Redis
docker run --name redis -p 6379:6379 -d redis redis-server --appendonly yes
(2)在item-service服务中引入Redis依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
(3)配置Redis地址
spring:
redis:
host: 192.168.136.160
(4)编写初始化类
缓存预热需要在项目启动时完成,并且必须是拿到RedisTemplate之后。
这里我们利用InitializingBean接口来实现,因为InitializingBean可以在对象被Spring创建并且成员变量全部注入后执行。
package com.heima.item.config;
@Component
public class RedisHandler implements InitializingBean {
@Autowired
private StringRedisTemplate redisTemplate;
@Autowired
private IItemService itemService;
@Autowired
private IItemStockService stockService;
private static final ObjectMapper MAPPER = new ObjectMapper();
@Override
public void afterPropertiesSet() throws Exception {
// 初始化缓存
// 1.查询商品信息
List<Item> itemList = itemService.list();
// 2.放入缓存
for (Item item : itemList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(item);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
}
// 3.查询商品库存信息
List<ItemStock> stockList = stockService.list();
// 4.放入缓存
for (ItemStock stock : stockList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(stock);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
}
}
}
现在,Redis缓存已经准备就绪,我们可以再OpenResty中实现查询Redis的逻辑了。如下图红框所示:
当请求进入OpenResty之后:
OpenResty提供了操作Redis的模块,我们只要引入该模块就能直接使用。但是为了方便,我们将Redis操作封装到之前的common.lua工具库中。
修改/usr/local/openresty/lualib/common.lua
文件:
(1)引入Redis模块,并初始化Redis对象
-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)
(2)封装函数,用来释放Redis连接,其实是放入连接池
-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
local pool_size = 100 --连接池大小
local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
if not ok then
ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
end
end
(3)封装函数,根据key查询Redis数据
-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
-- 获取一个连接
local ok, err = red:connect(ip, port)
if not ok then
ngx.log(ngx.ERR, "连接redis失败 : ", err)
return nil
end
-- 查询redis
local resp, err = red:get(key)
-- 查询失败处理
if not resp then
ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
end
--得到的数据为空处理
if resp == ngx.null then
resp = nil
ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
end
close_redis(red)
return resp
end
(4)导出
-- 将方法导出
local _M = {
read_http = read_http,
read_redis = read_redis
}
return _M
接下来,我们就可以去修改item.lua文件,实现对Redis的查询了。
查询逻辑是:
(1)修改/usr/local/openresty/lua/item.lua
文件,添加了一个查询函数,完整文件如下:
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
-- 导入cjson库
local cjson = require('cjson')
local read_redis = common.read_redis
-- 封装查询函数
function read_data(key, path, params)
-- 查询本地缓存
local val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
-- 返回数据
return val
end
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_data("item:id:"..id,"/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_data("item:stock:id:"..id,"/item/stock/".. id, nil)
-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(itemStockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold
-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))
整个多级缓存中只差最后一环,也就是nginx的本地缓存了。如图:
OpenResty为Nginx提供了shard dict的功能,可以在nginx的多个worker之间共享数据,实现缓存功能。
(1)开启共享字典,在nginx.conf的http下添加配置:
# 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m
lua_shared_dict item_cache 150m;
(2)item.lua中操作共享字典:
-- 获取本地缓存对象
local item_cache = ngx.shared.item_cache
-- 存储, 指定key、value、过期时间,单位s,默认为0代表永不过期
item_cache:set('key', 'value', 1000)
-- 读取
local val = item_cache:get('key')
(1)修改/usr/local/openresty/lua/item.lua
文件,修改read_data查询函数,添加本地缓存逻辑:
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache
-- 封装查询函数
function read_data(key, expire, path, params)
-- 查询本地缓存
local val = item_cache:get(key)
if not val then
ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
-- 查询redis
val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
end
-- 查询成功,把数据写入本地缓存
item_cache:set(key, val, expire)
-- 返回数据
return val
end
(2)完整文件
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache
-- 封装查询函数
function read_data(key, expire, path, params)
-- 查询本地缓存
local val = item_cache:get(key)
if not val then
ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
-- 查询redis
val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
end
-- 查询成功,把数据写入本地缓存
item_cache:set(key, val, expire)
-- 返回数据
return val
end
-- 获取路径参数
local id = ngx.var[1]
-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, 1800, "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, 60, "/item/stock/" .. id, nil)
-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold
-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))
其实就是多了缓存时间参数,过期后nginx缓存会自动删除,下次访问即可更新缓存。
这里给商品基本信息设置超时时间为30分钟,库存为1分钟。
因为库存更新频率较高,如果缓存时间过长,可能与数据库差异较大。
大多数情况下,浏览器查询到的都是缓存数据,如果缓存数据与数据库数据存在较大差异,可能会产生比较严重的后果。
所以我们必须保证数据库数据、缓存数据的一致性,这就是缓存与数据库的同步。
缓存数据同步的常见方式有三种:
设置有效期:给缓存设置有效期,到期后自动删除。再次查询时更新
同步双写:在修改数据库的同时,直接修改缓存
**异步通知:**修改数据库时发送事件通知,相关服务监听到通知后修改缓存数据
而异步实现又可以基于MQ或者Canal来实现:
(1)基于MQ的异步通知:
解读:
依然有少量的代码侵入。
(2)基于Canal的通知
代码零侵入
Canal [kə’næl],译意为水道/管道/沟渠,canal是阿里巴巴旗下的一款开源项目,基于Java开发。基于数据库增量日志解析,提供增量数据订阅&消费。GitHub的地址:https://github.com/alibaba/canal
Canal是基于mysql的主从同步来实现的,MySQL主从同步的原理如下:
而Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成对其它数据库的同步。
Canal是基于MySQL的主从同步功能,因此必须先开启MySQL的主从功能才可以。
这里以之前用Docker运行的mysql为例:
(1)打开mysql容器挂载的日志文件,我的在/tmp/mysql/conf
目录:
(2)修改文件,添加内容:
log-bin=/var/lib/mysql/mysql-bin
binlog-do-db=store
配置解读:
log-bin=/var/lib/mysql/mysql-bin
:设置binary log文件的存放地址和文件名,叫做mysql-binbinlog-do-db=store
:指定对哪个database记录binary log events,这里记录store这个库最终效果:
[mysqld]
skip-name-resolve
character_set_server=utf8
datadir=/var/lib/mysql
server-id=1000
log-bin=/var/lib/mysql/mysql-bin
binlog-do-db=store
接下来添加一个仅用于数据同步的账户,出于安全考虑,这里仅提供对store这个库的操作权限。
create user canal@'%' IDENTIFIED by 'canal';
GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT,SUPER ON *.* TO 'canal'@'%' identified by 'canal';
FLUSH PRIVILEGES;
重启mysql容器即可
docker restart mysql
测试设置是否成功:在mysql控制台,或者Navicat中,输入命令:
show master status;
(1)创建网络
我们需要创建一个网络,将MySQL、Canal、MQ放到同一个Docker网络中:
docker network create myNet
让mysql加入这个网络:
docker network connect myNet mysql
(2)安装Canal
上传到虚拟机,然后通过命令导入:
docker load -i canal.tar
然后运行命令创建Canal容器:
docker run -p 11111:11111 --name canal \
-e canal.destinations=heima \
-e canal.instance.master.address=mysql:3306 \
-e canal.instance.dbUsername=canal \
-e canal.instance.dbPassword=canal \
-e canal.instance.connectionCharset=UTF-8 \
-e canal.instance.tsdb.enable=true \
-e canal.instance.gtidon=false \
-e canal.instance.filter.regex=heima\\..* \
--network heima \
-d canal/canal-server:v1.1.5
说明:
-p 11111:11111
:这是canal的默认监听端口-e canal.instance.master.address=mysql:3306
:数据库地址和端口,如果不知道mysql容器地址,可以通过docker inspect 容器id
来查看-e canal.instance.dbUsername=canal
:数据库用户名-e canal.instance.dbPassword=canal
:数据库密码-e canal.instance.filter.regex=
:要监听的表名称表名称监听支持的语法:
mysql 数据解析关注的表,Perl正则表达式.
多个正则之间以逗号(,)分隔,转义符需要双斜杠(\\)
常见例子:
1. 所有表:.* or .*\\..*
2. canal schema下所有表: canal\\..*
3. canal下的以canal打头的表:canal\\.canal.*
4. canal schema下的一张表:canal.test1
5. 多个规则组合使用然后以逗号隔开:canal\\..*,mysql.test1,mysql.test2
Canal提供了各种语言的客户端,当Canal监听到binlog变化时,会通知Canal的客户端。
我们可以利用Canal提供的Java客户端,监听Canal通知消息。当收到变化的消息时,完成对缓存的更新。
不过这里我们会使用GitHub上的第三方开源的canal-starter客户端。地址:https://github.com/NormanGyllenhaal/canal-client
与SpringBoot完美整合,自动装配,比官方客户端要简单好用很多。
(1)一.引入依赖:
<dependency>
<groupId>top.javatool</groupId>
<artifactId>canal-spring-boot-starter</artifactId>
<version>1.2.1-RELEASE</version>
</dependency>
(2)编写配置:
canal:
destination: store# canal的集群名字,要与安装canal时设置的名称一致
server: 192.168.136.160:11111 # canal服务地址
(3)修改Item实体类
通过@Id、@Column、等注解完成Item与数据库表字段的映射:
@Data
@TableName("tb_item")
public class Item {
@TableId(type = IdType.AUTO)
@Id
private Long id;//商品id
@Column(name = "name")
private String name;//商品名称
private String title;//商品标题
private Long price;//价格(分)
private String image;//商品图片
private String category;//分类名称
private String brand;//品牌名称
private String spec;//规格
private Integer status;//商品状态 1-正常,2-下架
private Date createTime;//创建时间
private Date updateTime;//更新时间
@TableField(exist = false)
@Transient
private Integer stock;
@TableField(exist = false)
@Transient
private Integer sold;
}
(4)编写监听器
通过实现EntryHandler
接口编写监听器,监听Canal消息。注意两点:
@CanalTable("tb_item")
指定监听的表信息package com.heima.item.cancal;
@CanalTable("tb_item")
@Component
public class ItemHandler implements EntryHandler<Item> {
@Autowired
private RedisHandler redisHandler;
@Autowired
private Cache<Long, Item> itemCache;
@Override
public void insert(Item item) {
// 写数据到JVM进程缓存
itemCache.put(item.getId(), item);
// 写数据到redis
redisHandler.saveItem(item);
}
@Override
public void update(Item before, Item after) {
// 写数据到JVM进程缓存
itemCache.put(after.getId(), after);
// 写数据到redis
redisHandler.saveItem(after);
}
@Override
public void delete(Item item) {
// 删除数据到JVM进程缓存
itemCache.invalidate(item.getId());
// 删除数据到redis
redisHandler.deleteItemById(item.getId());
}
}
在这里对Redis的操作都封装到了RedisHandler这个对象中,是我们之前做缓存预热时编写的一个类,内容如下:
package com.heima.item.cancal;
@Component
public class RedisHandler implements InitializingBean {
@Autowired
private StringRedisTemplate redisTemplate;
@Autowired
private IItemService itemService;
@Autowired
private IItemStockService stockService;
private static final ObjectMapper MAPPER = new ObjectMapper();
@Override
public void afterPropertiesSet() throws Exception {
// 初始化缓存
// 1.查询商品信息
List<Item> itemList = itemService.list();
// 2.放入缓存
for (Item item : itemList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(item);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
}
// 3.查询商品库存信息
List<ItemStock> stockList = stockService.list();
// 4.放入缓存
for (ItemStock stock : stockList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(stock);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
}
}
public void saveItem(Item item) {
try {
String json = MAPPER.writeValueAsString(item);
redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
} catch (JsonProcessingException e) {
throw new RuntimeException(e);
}
}
public void deleteItemById(Long id) {
redisTemplate.delete("item:id:" + id);
}
}