# import numpy as np
# y = np.array([1,0,0])
# z = np.array([0.2,0.1,-0.1])
# y_pred = np.exp(z) / np.exp(z).sum()
# loss = (-y * np.log(y_pred)).sum()
# print(loss)
# import torch
# criterion = torch.nn.CrossEntropyLoss()
# Y = torch.LongTensor([2,0,1])
# Y_pred1 = torch.Tensor([[0.1,0.2,0.9],
# [1.1,0.1,0.2],
# [0.2,2.1,0.1]])
# Y_pred2 = torch.Tensor([[0.9,0.2,0.4],
# [0.2,0.9,2.0],
# [0.2,0.7,0.9]])
#
# l1 = criterion(Y_pred1,Y)
# l2 = criterion(Y_pred2,Y)
# print("Batch Loss1 = ",l1.data,"Batch Loss2 = ",l2.data)
import torch
#下面三个和数据集有关的包
import torchvision
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F #激活函数使用ReLU
import torch.optim as optim #使用优化器
batch_size = 64
#转换为图像张量
transforms = transforms.Compose([
transforms.ToTensor(), #convert the PIL Image to Tensor,把单通道变成多通道
transforms.Normalize((0.1307, ), (0.3081, )) #归一化,切换到0-1分布,前面是均值,后面是方差
])
train_dataset = torchvision.datasets.MNIST(
root="../data/MNIST",
train=True, #只使用训练集
#将数据转化为torch使用的张量,取值范围为[0,1]
transform=torchvision.transforms.ToTensor(),#参数transfrom用于指定数据集的变换,
#transform=transforms.ToTensor()表示将数据中的像素值转换到0~1之间,并且将图像数据从形状为[H,W,C]转换成形状为[C,H,W]
download=False
)
# train_dataset = datasets.MNIST(root='../data/MNIST/',
# train=True,
# transform=transforms)
train_loader = DataLoader(train_dataset,
shuffle=True,
batch_size=batch_size)
test_dataset = datasets.MNIST(root='../data/MNIST/',
train=False,
download=False,
transform=transforms
)
test_loader = DataLoader(test_dataset,
shuffle=False,
batch_size=batch_size)
#N个样本,每个样本是1维28×28的图像(N,1,28,28)
#输入层
# x = x.view(-1,784) #使用view函数,把张量变成二阶张量,也就是矩阵,列数是784.28×28=784
#
# #线性层
# self.l1 = torch.nn.Linear(784,512)
#
# #ReLU层
# x = F.relu(self.l1(x)),用ReLU对每一层进行激活
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = torch.nn.Linear(784,512)
self.l2 = torch.nn.Linear(512,256)
self.l3 = torch.nn.Linear(256,128)
self.l4 = torch.nn.Linear(128,64)
self.l5 = torch.nn.Linear(64,10)
def forward(self,x):
x = x.view(-1,784)
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x)
model = Net()
#3
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=0.01,momentum=0.5) #因为模型比较大,所以用带冲量的,momentum=0.5,来优化训练过程
#4
#把单独的一轮封装到函数里
def train(epoch):
running_loss = 0.0
for batch_idx,data in enumerate(train_loader,0):
inputs,target = data #inputs是x,target是y
optimizer.zero_grad()
#forward + backward + update
outputs = model(inputs)
loss = criterion(outputs,target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299: #每训练300次输出
print('[%d, %5d loss:%.3f' % (epoch + 1,batch_idx + 1, running_loss/300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad(): #不用计算梯度
for data in test_loader:
images,labels=data
outputs = model(images)
_,predicted = torch.max(outputs.data,dim=1) #求每一行最大值,也就是分类,返回每一行的最大值,以及最大值的下标
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuarcy on test set:%d %%' % (100*correct/total))
#训练
if __name__=='__main__':
for epoch in range(10):
train(epoch)
test()