- 经典与量子结合:微算法科技(MLGO)混合经典量子算法优化多查询问题
MicroTech2025
科技量子计算
在当今快速发展的技术领域,量子计算被视为解决复杂问题的下一个前沿。尽管量子计算机的潜力巨大,但它们在实际应用中仍面临诸多挑战,尤其是在错误率和量子比特数量方面。为了克服这些限制,微算法科技(NASDAQ:MLGO)开发了一种创新的混合算法,结合了经典计算和量子计算的优势,以优化多查询问题(MQO)。量子计算是一种利用量子力学原理进行信息处理的技术。与传统的经典计算机相比,量子计算机在处理某些特定类
- 微算法科技(MLGO)基于 Grover 的量子算法在图形游戏中寻找纯纳什均衡的创新突破
MicroTech2025
科技量子计算
随着量子计算的迅猛发展,各行各业正积极探索其潜力,特别是在博弈论领域。在博弈论中,纳什均衡是描述多个参与者在游戏中选择策略时相互影响的一种状态。在很多情况下,找到纯纳什均衡并不容易,尤其是在复杂的图形游戏中。传统算法的计算复杂性常常导致求解时间过长,因此引入量子算法有助于提高效率。Grover搜索算法是一种有效的量子搜索算法,能够在未标记的数据库中以平方根的时间复杂度找到目标元素。它通过振幅放大技
- 量子计算时代的突破:微算法科技开发出多目标进化算法推动量子电路创新
量子计算正处于技术发展的前沿,但其实际应用与潜力的实现仍然面临巨大挑战。量子计算机的基本单位是量子比特(qubit),与经典计算机的比特不同,量子比特可以同时处于多个状态(叠加),并通过纠缠现象相互作用。理论上,量子计算机能够以比经典计算机快得多的速度解决某些问题,特别是在处理涉及大量变量和复杂数据集的问题时。尽管量子硬件的进步令人瞩目,尤其是近期一些公司推出了量子处理器,但量子算法(即量子计算机
- OpenAI模型可解释性工具:理解AI的黑箱
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能百度ai
OpenAI模型可解释性工具:理解AI的黑箱关键词:OpenAI模型、可解释性工具、AI黑箱、模型理解、人工智能摘要:本文旨在深入探讨OpenAI模型可解释性工具,帮助大家理解AI这个“黑箱”。首先介绍了研究的背景、目的和预期读者,接着解释了核心概念,包括OpenAI模型、可解释性工具等,阐述了它们之间的关系。通过核心算法原理、数学模型和公式的讲解,让大家明白其内在机制。还给出了项目实战案例,包括
- 突破量子仿真瓶颈:微算法科技MLGO量子算法的算术化与核操作迭代模型
近年来,量子计算机的迅速发展和潜在的强大计算能力吸引了全球科研机构和企业的广泛关注。量子计算机利用量子力学的特性来处理复杂的计算任务,具有在某些方面远超经典计算机的潜力。然而,真正实用的量子计算机尚未大规模普及,因此在经典平台上模拟量子算法成为当前的研究热点之一。微算法科技(NASDAQ:MLGO)近日开发的一种创新型高精度、高吞吐量的可重构仿真技术,旨在为量子算法的研究和应用提供有效的解决方案。
- 数据质量是机器学习项目的核心痛点,AI技术能提供智能化解决方案。
zzywxc787
pythonpandasnumpy人工智能自动化运维AI编程
一、数据质量诊断系统(Python实现)importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansfromsklearn.ensembleimportIsolationForestfromtensorflow.keras.modelsimportSequentialfromte
- 使用python对音频做去噪 处理
莫夭阏之
python信号处理语音识别
要使用Python对音频进行去噪处理,您可以使用许多库和算法。以下是使用librosa和scipy库实现的基本去噪算法:首先,您需要安装所需的库。您可以使用以下命令安装它们:pipinstalllibrosascipynumpy接下来,您需要导入所需的库:importlibrosaimportscipy.signalassignalimportnumpyasnp加载音频文件并提取音频数据:y,sr
- 网络爬虫再深入——对抗指纹检测、分布式架构与智能解析实战
rooney2024
爬虫
目录一、深入反爬:浏览器指纹检测与对抗(配图1)1.高级指纹检测原理2.对抗方案与实战二、分布式爬虫架构深度设计(配图2)1.容错与弹性设计2.智能限流算法三、智能解析:LLM与计算机视觉的融合(配图3)1.LLM解析非结构化文本2.视觉辅助定位元素四、法律与伦理:爬虫工程师的自我修养1.关键法律边界2.道德实践框架五、未来战场:Web3.0时代的爬虫技术演进1.去中心化网络挑战2.AI驱动的自适
- 算法:二分法
萧格
定义二分查找也称折半查找(BinarySearch),它是一种效率较高的查找方法。在一个有序二维数组中,查找指定的值对应的键(下标)。适用场景有序数组实现代码$arr[$middle])$left=$middle+1;else$right=$middle-1;}return-1;}?>二分法变种有时候数组虽然是有序的,但是可能有多个重复的值,这时我们的需求就要变动了,算法也要做相应的调整。有重复值
- 精通 triton 使用 MLIR 的源码逻辑 - 第001节:triton 的应用简介
项目使用到MLIR,通过了解triton对MLIR的使用,体会到MLIR在较大项目中的使用方式,汇总一下。1.Triton概述OpenAITriton是一个开源的编程语言和编译器,旨在简化GPU高性能计算(HPC)的开发,特别是针对深度学习、科学计算等需要高效并行计算的领域。既允许开发者编写高度优化的代码,又不必过度关注底层硬件细节。这样,通过简化高性能计算,可以加速新算法的实现和实验。传统GPU
- 7.机器学习-十大算法之一拉索回归(Lasso)算法原理讲解
以山河作礼。
#机器学习算法机器学习算法回归
7.机器学习-十大算法之一拉索回归(Lasso)算法原理讲解一·摘要二·个人简介三·前言四·原理讲解五·算法流程六·代码实现6.1坐标下降法6.2最小角回归法七·第三方库实现7.1scikit-learn实现(坐标下降法):7.2scikit-learn实现(最小角回归法):一·摘要拉索回归(LassoRegression)是一种线性回归的正则化形式,它通过引入L1范数惩罚项来实现模型的稀疏性,从
- 机器学习算法之回归算法
福葫芦
机器学习回归算法
一、回归算法思维导图二、算法概念、原理、应用场景和实例代码1、线性回归1.1、概念线性回归算法是一种统计分析方法,用于确定两种或两种以上变量之间的定量关系。线性回归算法通过建立线性方程来预测因变量(y)和一个或多个自变量(x)之间的关系。其基本形式为y=wx+e,其中w是权重,x是自变量,e是误差项。1.2、算法原理线性回归算法的核心在于找到最佳的拟合直线,使得预测值与实际值之间的误差最小。
- 7篇1章7节:机器学习算法解读,与数值预测回归模型构建
MD分析
用R探索医药数据科学机器学习算法回归r语言数据挖掘
机器学习是当今数据分析和人工智能的核心工具之一,其算法广泛应用于分类、回归、排序和推荐等领域。本篇将详细讲解机器学习的四大经典算法类型,并以回归问题为例深入探讨数值预测的关键步骤,包括数据准备、线性回归模型构建、模型预测及误差评估,帮助读者更系统地理解和掌握机器学习的基础知识及实际应用。一、机器学习的算法在数据科学和人工智能的浪潮中,机器学习算法成为了解决各种数据问题的关键工具。机器学习主要处理四
- vue中实现验证码输入
结城
vue验证码vue输入框
vue验证码input输入解决焦点切换有点晚了就不吐槽了,咱还是把代码上了,赶紧洗澡,养好精神明天努力上班!!!想学node,想学react,想精进webpack,想vue学的更好一点,了解底层代码,学算法,学计算机原理,想写自己的博客网站…这是一条学无止境的路,没办法要恰饭效果html部分js部分exportdefault{props:{inputNums:{type:Number,defaul
- 基于逻辑回归的图像二分类算法实现(Pytorch版)
哎呦哥哥、
图像分类pytorch逻辑回归分类
基于逻辑回归的图像二分类算法实现(Pytorch版)数据集模型代码数据集链接:FastFoodClassificationDataset我们只使用Burger和Pizza这两类。模型代码importtorchimporttorch.nnasnnfromtorchvision.models.utilsimportload_state_dict_from_urlmodel_urls={'resnet5
- O (1) 空间搞定链表:穿针引线法核心技巧与例题
无聊的小坏坏
算法链表c++算法
文章目录穿针引线法的核心思想基础应用:链表反转1.全链表反转2.部分链表反转高级应用:链表重排穿针引线法的设计模式常见问题解决方案1.K个一组反转链表2.环形链表检测在链表操作的世界里,"穿针引线"是一种优雅而高效的技巧,它通过精准的指针操作,像缝纫一样重新连接节点,解决各种复杂的链表问题。这种技巧不依赖额外数据结构,空间复杂度仅为O(1),是算法面试中的必备技能。穿针引线法的核心思想指针即针线:
- 华为OD机试2025 B卷 - 通过软盘拷贝文件 (C++ & Python & JAVA & JS & GO)
无限码力
华为OD机试真题刷题笔记华为od华为OD机试华为OD机试2025B卷华为OD2025B卷华为OD机考2025B卷
通过软盘拷贝文件华为OD机试真题目录点击查看:华为OD机试2025B卷真题题库目录|机考题库+算法考点详解华为OD机试2025B卷100分题型题目描述有一名科学家想要从一台古董电脑中拷贝文件到自己的电脑中加以研究。但此电脑除了有一个3.5寸软盘驱动器以外,没有任何手段可以将文件持贝出来,而且只有一张软盘可以使用。因此这一张软盘是唯一可以用来拷贝文件的载体。科学家想要尽可能多地将计算机中的信息拷贝到
- python学智能算法(二十四)|SVM-最优化几何距离的理解
引言前序学习过程中,已经对几何距离的概念有了认知,学习链接为:几何距离这里先来回忆几何距离δ的定义:δ=mini=1...myi(w∥w∥⋅xi+b∥w∥)\delta=\min_{i=1...m}y_{i}(\frac{w}{\left\|w\right\|}\cdotx_{i}+\frac{b}{\left\|w\right\|})δ=i=1...mminyi(∥w∥w⋅xi+∥w∥b)对上
- 华为OD机试2025C卷 - 计算三叉搜索树的高度 (C++ & Python & JAVA & JS & GO)
无限码力
华为OD机试真题刷题笔记华为od华为OD机试2025C卷华为OD2025C卷华为OD机考2025C卷
计算三叉搜索树的高度华为OD机试真题目录点击查看:华为OD机试2025C卷真题题库目录|机考题库+算法考点详解华为OD机试2025C卷100分题型题目描述定义构造三叉搜索树规则如下:每个节点都存有一个数,当插入一个新的数时,从根节点向下寻找,直到找到一个合适的空节点插入。查找的规则是:如果数小于节点的数减去500,则将数插入节点的左子树如果数大于节点的数加上500,则将数插入节点的右子树否则,将数
- 支持向量机SVM
李昊哲小课
sklearn人工智能机器学习支持向量机算法机器学习sklearn人工智能数据挖掘
支持向量机SVM一、支持向量机算法支持向量机(SupportVectorMachine,SVM)是一种用于分类和回归分析的机器学习算法。分类场景举例(更容易理解)假设现在有一个二维平面上散落着一些点,这些点分为两类,一类是红色的圆形点,另一类是蓝色的方形点。我们的任务就是找到一条直线,能够把这两类点尽可能准确地分开。支持向量机算法做的事情就和这个类似。算法核心思想它不是随便找一条能分开两类数据的直
- 打卡Day12
HAhhhiu
python学习打卡python机器学习
@浙大疏锦行知识点:遗传算法:来源于自然界中的生物进化和基因遗传思想:模拟生物进化过程,通过“选择(保留优秀解)、交叉(组合解的特征)、变异(引入新特征)”迭代优化我想培养出一只超级泰迪犬?该怎么办呢?首先,我有一群泰迪犬,但是小泰迪们的各种基因不同,形态各色,我只想要一只高大、卷毛和聪明的泰迪。(这是初始解的集合,也是案例学习代码中,我们所设定的随机森林中的一堆的参数范围)接着,我开始挑选符合上
- 财富自由之路第三章
可可_4b5e
读好书一定要慢。文字的出现,使人类与其他动物区分开来。人类也正是因为有了文字才与其它物种有了本质上的不同。而阅读,对于任何一个正常人类来说都具有非凡的意义。人类之外的物种只能依赖最落后但被称为神奇的方式积累经验:基因遗传。啄木鸟可以本能地采用最优算法获取食物——而一个MIT的数学博士面对同样的问题却不见得可以迅速解决;而啄木鸟的小脑袋在没有受过高等教育的情况下,是如何得到结果的呢?答案是:通过上百
- 高斯混合模型(GMM)中的协方差矩阵类型与聚类形状关系详解
码字的字节
机器学习机器学习人工智能高斯混合模型GMM
高斯混合模型(GMM)简介高斯混合模型(GaussianMixtureModel,GMM)是概率统计与机器学习交叉领域的重要模型,其核心思想是通过多个高斯分布的线性组合来描述复杂数据分布。与单一高斯分布不同,GMM能够捕捉数据中的多模态特性,这使得它在处理真实世界非均匀分布数据时展现出独特优势。从数学形式上看,一个包含K个分量的GMM可表示为:其中(\pi_k)是第k个高斯分量的混合系数(满足(\
- 【数据结构 | C语言】Dijkstra算法(迪杰斯特拉算法)
竹一笔记
C数据结构数据结构c语言开发语言
文章目录一、Dijkstra算法介绍二、算法C语言三、完整代码四、示例一、Dijkstra算法介绍Dijkstra算法解决了单源点的最短路径Dijkstra算法是贪心算法步骤:从源点出发,找到已连通点与未连通点的最小代价边连接最小代价边,将该顶点归并到已连接顶点集将该顶点连通的边的代价与最小代价比较,若代价小于最小代价,则更新最小代价边重复操作,直到连通所有顶点为止Dijkstra算法与Prim算
- lab2-2 Dijkstra算法求由顶点a到顶点h的最短路径
西一安鲜
算法
1.问题[描述算法问题,首选形式化方式(数学语言),其次才是非形式化方式(日常语言)]对于下图使用Dijkstra算法求由顶点a到顶点h的最短路径,按实验报告模板编写算法。2.解析Dijkstra算法(单源点路径算法,要求:图中不存在负权值边),Dijkstra算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树。Dijkstra(迪杰斯特拉)算法是典型的
- 单源最短路之dijkstra
「維他檸檬茶」
算法最短路
迪杰斯特拉算法主要用于解决单源最短路问题,主要有两种,朴素版和堆优化版,数据量较大时用堆优化版。迪杰斯特拉朴素版:#include#includeusingnamespacestd;#defineintlonglong//可能会超时#definePIIpairconstintINF=0x3f3f3f3f,mod=998244353;constintN=505;intn,m;intg[N][N],m
- 【初学数据结构】关于KMP算法的回退思考
Das1
算法数据结构
初学KMP算法时,理解next数组以及回退过程是一个超级劝退过程。如果实在理解不了的,可以直接背。虽然作为十大经典算法之一,但是并不是非常重要,也就考试会考到罢了。关键数据结构解释next数组:next[k]是t[0]~t[j-1]这个串的最大相同前缀的后一个地址,同时也表示最大相同前缀的数量。s串,t串:表示两个索引j,k在进行匹配时所指代的字串next数组是什么?求next数组实际上就是求对于
- 【算法-图论】图的定义与一些常用术语
小蛋编程
C++c++算法
【算法-图论】图的定义图论编辑器1:https://csacademy.com/app/graph_editor/图论编辑器2:https://graphonline.top/ch/1.图是什么图(graph)由节点(node)和边(edge)组成。其中,节点集合记为VVV,边集合记为EEE。每条边连接两个节点,某些图的边可能具有方向性。集合元素的数量用该集合的绝对值来表示。通过对比可以看出,图比
- 【PTA数据结构 | C语言版】求图中关键活动
本专栏持续输出数据结构题目集,欢迎订阅。文章目录题目代码题目请编写程序,实现求带权的有向图中关键活动的算法。输入格式:输入首先在第一行给出两个正整数,依次为当前要创建的图的顶点数n(≤100)和边数m。随后m行,每行给出一条有向边的起点编号、终点编号、权重。顶点编号从0开始,权重(≤100)为整数。同行数字均以一个空格分隔。输出格式:按格式输出关键活动,其中u为起点编号,v为终点编号。按起点编号的
- 【PTA数据结构 | C语言版】最短路的交点
本专栏持续输出数据结构题目集,欢迎订阅。文章目录题目代码题目给定有向加权图G,和4个顶点u,v,s,t。假设图G中所有边的权值都非负。设计一个算法来判定“从u到v的最短路径”和“从s到t的最短路径”是否存在一个交点w。也即,顶点w是u到v的最短路径上的一个顶点,同时也是s到t的最短路径上的一个顶点。注意:最短路径包含两个端点;一对顶点间的最短路径可能不止一条,求交点时必须将所有最短路径考虑在内。输
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio