- vue2和vue3的diff算法有什么区别?
浮生无聊
vue.jsjavascript前端面试
1、diff算法是什么?diff算法是一种通过同层的树节点进行比较的高效算法。其有两个特点:只会在同层进行比较,不会跨层比较在diff比较过程中,循环从两边向中间比较diff算法在很多场景下都有应用,在vue中,作用于虚拟dom渲染成真实dom的新旧虚拟节点比较。diff整体策略为:深度优先,同层比较。Vue2和Vue3中的diff算法的主要区别:1、vue2的diff算法vue2使用了经典的di
- 【设计模式】(22)模板方法模式
xiyubaby.17
设计模式Java教程设计模式模板方法模式
模板方法模式(TemplateMethodPattern)教程一、模式定义模板方法模式在父类中定义了一个算法的骨架,允许子类在不改变算法结构的前提下重写某些特定步骤。核心目标:复用公共流程,差异化实现细节,确保算法步骤的稳定性和扩展性。二、适用场景统一流程,差异细节:多个类有相同流程但某些步骤实现不同(如数据解析、文档生成)。框架设计:框架定义核心流程,用户通过子类扩展具体行为(如SpringJd
- SpringBoot实战系列之发送短信验证码
m0_67401660
面试学习路线阿里巴巴android前端后端
大家好,我是??大二在读作业侠系列最新文章??Java实现聊天程序SpringBoot实战系列??SpringBoot实战系列之发送短信验证码一起刷算法与数据结构最新文章??一起刷算法与数据结构-树篇1环境搭建大集合环境搭建大集合(持续更新)内容速览:1.短信验证码平台选择考虑点2.短信平台3.实战发送短信验证码1.短信验证码平台选择考虑点各个类型短信价格短信到达率、到达时间短信内容变量灵活,便持
- 区间合并问题
六七_Shmily
数据结构与算法分析算法区间合并
在算法中遇到区间合并问题时,可以从以下角度进行分析和解决:一、核心思路:排序与贪心策略排序预处理将区间按照起始端点升序排序,确保后续处理时相邻区间可能重叠。这是解决区间合并问题的关键预处理步骤[。排序后,重叠或相邻的区间会连续排列,便于合并(例如,区间[1,3]和[2,6]会相邻)。贪心合并逻辑遍历排序后的区间,逐个判断是否与结果集中的最后一个区间重叠:重叠条件:当前区间的起始点≤结果集最后一个区
- Python精进系列: K-Means 聚类算法调用库函数和手动实现对比分析
进一步有进一步的欢喜
Python精进系列算法pythonkmeans
一、引言在机器学习领域,聚类分析是一种重要的无监督学习方法,用于将数据集中的样本划分为不同的组或簇,使得同一簇内的样本具有较高的相似性,而不同簇之间的样本具有较大的差异性。K-Means聚类算法是最常用的聚类算法之一,它以其简单性和高效性在数据挖掘、图像分割、模式识别等领域得到了广泛应用。本文将详细介绍K-Means聚类算法,并分别给出调用现成函数和不调用任何现成函数实现K-Means聚类的代码示
- 计算机二级c语言选择题1
xu_hhh_
计算机二级c语言选择题c语言开发语言
c语言源程序后缀:.c计算机能执行的程序:可执行程序c语言主要借助定义函数实现模块化结构化算法可以解决任何复杂的问题高级语言都有与之对应的编译程序或解释程序用任何一种计算机高级语言都可以把算法转换为程序计算机不可以直接执行由任意高级语言编写的程序c语言常量:(1)字符可以有两个eg:‘72’(如果单引号里面的字符有多个,以最后一个为准,打印时只打印最后一个)(2)1.2e0.5e后面不能为小数,必
- 热门AI创作助手推荐【第一期】
量子星澜
文心一言AI写作chatgpt
星游AI创作助手人工智能在现代科技中的应用非常广泛,涵盖了诸多领域,包括但不限于以下几个方面:1.语音识别和自然语言处理:人工智能技术被广泛应用于语音识别和自然语言处理领域,例如智能助手、翻译系统、语音交互系统等。2.机器学习和数据分析:人工智能的机器学习算法被用于数据分析、预测建模、用户个性化推荐等领域,帮助企业做出更准确的商业决策。3.计算机视觉:人工智能在计算机视觉领域的应用包括图像识别、视
- 新手村:线性回归-实战-波士顿房价预测
嘉羽很烦
机器学习线性回归算法回归
新手村:线性回归-实战-波士顿房价预测前置条件阅读:新手村:线性回归了解相关概念实验目的1.熟悉机器学习的一般流程2.掌握基础的数据处理方法3.理解常用的回归算法教学例子:预测房价(以波士顿房价数据集为例)本次实验,你将使用真实的波士顿房价数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念和评价方法,请通过机器学习建立回归模型,即:Y=θ0+θ1×X1+θ2×X2+θ3×X3+⋯+θ
- 新手村:混淆矩阵
嘉羽很烦
机器学习机器学习
新手村:混淆矩阵一、前置条件知识点要求学习资源分类模型基础理解分类任务(如二分类、多分类)和常见分类算法(如逻辑回归、决策树)。《Hands-OnMachineLearningwithScikit-Learn》Python基础熟悉变量、循环、函数、列表、字典等基本语法。《PythonCrashCourse》或在线教程(如Codecademy)scikit-learn基础掌握模型训练、预测、评估的基
- 【解锁机器学习:探寻数学基石】
游戏乐趣
机器学习人工智能
机器学习中的数学基础探秘在当今数字化时代,机器学习无疑是最具影响力和发展潜力的技术领域之一。从图像识别到自然语言处理,从智能推荐系统到自动驾驶,机器学习的应用无处不在,深刻地改变着我们的生活和工作方式。然而,在这看似神奇的机器学习背后,数学作为其坚实的理论基础,起着不可或缺的关键作用。毫不夸张地说,数学是打开机器学习大门的钥匙,是理解和掌握机器学习算法与模型的核心所在。想象一下,机器学习就像是一座
- 机器学习——正则化、欠拟合、过拟合、学习曲线
代码的建筑师
学习记录机器学习机器学习学习曲线过拟合欠拟合正则化
过拟合(overfitting):模型只能拟合训练数据的状态。即过度训练。避免过拟合的几种方法:①增加全部训练数据的数量(最为有效的方式)②使用简单的模型(简单的模型学不够,复杂的模型学的太多),这里的简单指的是不要过于复杂③正则化(对目标函数后加上正则化项):使得这个“目标函数+正则化项”的值最小,即为正则化,用防止参数变得过大(参数值变小,意味着对目标函数的影响变小),λ是正则化参数,代表正则
- 数据结构Python版---生成螺旋矩阵(Day5)
圆嘟嘟2019
数据结构Python版python算法开发语言leetcode数据结构
文章目录1.1⭐算法原理:1.2连续数组长度1.1⭐算法原理:生成螺旋矩阵原理:通过模拟矩阵填充来解决,像蜗牛的螺旋一样,从外往里旋。1.2连续数组长度给定一个正整数n,生成一个包含1到n^2所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。示例1:输入:3输出:[[1,2,3],[8,9,4],[7,6,5]]通过模拟矩阵填充的过程来解决,使用四个变量top、bottom、left、right来
- 从过拟合到强化学习:机器学习核心知识全解析
吴师兄大模型
0基础实现机器学习入门到精通机器学习人工智能过拟合强化学习pythonLLMscikit-learn
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【网络安全】使用mbedtls 实现 RSA 签名、验签、加密、解密
亿码归一码
网络安全web安全安全
简介mbedtls(前身是PolarSSL)是一个开源、轻量级的SSL/TLS库,专为嵌入式系统和资源受限环境设计。RSA是一种广泛应用的非对称加密算法,是公开密钥密码体制(PublicKeyCryptosystem)的一个典型代表,它的核心特点是采用一对密钥,分别是公开密钥(PublicKey)和私有密钥(PrivateKey)。相关头文件#include#include#include#inc
- 利用matlab实现贝叶斯优化算法(BO)优化支持向量机回归(SVR)的超参数
是内啡肽耶
算法matlab支持向量机机器学习回归
【导读】在机器学习建模中,支持向量机(SVM)回归模型的效果高度依赖超参数选择。但手动调参就像"大海捞针",而网格搜索又面临"计算爆炸"的难题。今天给大家介绍一个智能调参黑科技——贝叶斯优化算法。通过Matlab实现,只需几分钟就能让模型性能自动升级!一、为什么要用贝叶斯优化调参?传统调参三大痛点:C参数(正则化强度):过小导致过拟合,过大削弱模型能力ε参数(不敏感区域):决定对预测误差的容忍度核
- MATLAB代码开发实战:从入门到高效应用
vvvae1234
matlab开发语言
一、MATLAB生态系统的核心优势(扩展原有内容,增加行业数据)MATLAB在全球工程领域的市场占有率已达67%(2024年IEEE统计),其核心优势体现在:矩阵运算速度比传统编程快3-5倍包含22个专业工具箱的完整工具链与硬件设备(如Arduino)的即插即用接口自动生成C/C++代码的部署能力案例佐证:2023年NASA火星探测器使用MATLAB/Simulink完成97%的导航算法验证二、代
- 2024年12月CCF-GESP编程能力等级认证C++编程四级真题解析
前网易架构师-高司机
c++开发语言CCF-GESP
四级真题的难度:一、总体难度评价CCF-GESP编程能力等级认证C++四级真题的难度通常被认为相对较高。它不仅要求考生具备扎实的C++编程基础,还需要考生掌握一定的算法和数据结构知识,以及良好的问题解决能力。二、具体难度分析理论知识考察:单选题和判断题中,会涉及C++语言的理论基础知识,如数组的存储原理、函数的各种传参方式、指针、引用等。这些题目要求考生对C++语言有深入的理解。编程技能考察
- 基于DeepSeek R1构建下一代Manus通用型AI智能体的技术实践
zhangjiaofa
DeepSeekR1&AI人工智能大模型DeepSeekManus智能体AI
目录一、技术背景与目标定位1.1大模型推理能力演进趋势1.2DeepSeekR1核心特性解析-混合专家架构(MoE)优化-组相对策略优化(GRPO)原理-多阶段强化学习训练范式1.3Manus智能体框架设计理念-多智能体协作机制-安全执行沙箱设计二、系统架构设计2.1整体架构拓扑图-分层模块交互机制-数据流与控制流设计2.2核心组件实现-规划模块(GRPO算法集成)-记忆系统分级存储架构-工具调用
- 强化学习:时间差分(TD)(SARSA算法和Q-Learning算法)(看不懂算我输专栏)——手把手教你入门强化学习(六)
wxchyy
强化学习算法
目录前言前期回顾一、SARSA算法二、Q-Learning算法三、总结总结前言 前两期我们介绍了动态规划算法,还有蒙特卡洛算法,不过它们对于状态价值函数的估值都有其缺陷性,像动态规划,需要从最下面向上进行递推,而蒙特克洛则需要一个Episode(回合)结束才能对其进行估值,有没有更直接的方法,智能体能边做动作,边估值一次,不断学习策略?答案是有的。这就是本期需要介绍的算法,时间差分法(TimeDi
- 回溯算法知识总结
专业刷题Pia
算法
1.什么是回溯怎么用(回溯本质及模版)底层逻辑:解决树形结构问题、用到递归逻辑、穷举本质优化靠剪枝。回溯模版:1.建立回溯函数(一般以void返回)难点:如何选取参数(index,sum,used,...)voidbacktracking(参数)2.回溯终止条件难点:如何对应终止条件if(终止条件){存放结果;return;}3.单层遍历规则(广搜(横向遍历)靠for循环,深搜(纵向遍历)靠递归)
- 机器学习的下一个前沿是因果推理吗?——探索机器学习的未来方向!
真智AI
人工智能机器学习
机器学习的进化:从预测到因果推理机器学习凭借强大的预测能力,已经彻底改变了多个行业。然而,要实现真正的突破,机器学习还需要克服实践和计算上的挑战,特别是在因果推理方面的应用。未来,因果推理或许将成为推动机器学习发展的新前沿。什么是因果推理,它如何与机器学习相关?如果你和我一样没有数学背景,你可能会好奇“因果推理”到底意味着什么?它与机器学习又有什么关系?当我刚开始学习机器学习时,第一次听到“因果推
- AI编程篇-python基础篇
cv工程师(ctrl+c\v)
AI编程python
转型AI算法后的总结-python基础篇python基础AI算法工程师的日常开发工作离不开python这门语言。python的优点:开源免费、简单易学、丰富的库。以下是我总结的python的一些基础:1.python及IDE工具安装对于初学者来说,python的安装是必不可少的,但是为了方便代码编辑和查看结果及debug,可以安装pycharm社区版暂时用来前期学习:python安装及注意事项:下
- 大规模语言模型从理论到实践 开源指令数据集
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践开源指令数据集1.背景介绍大规模语言模型(LargeLanguageModels,LLMs)近年来在自然语言处理(NLP)领域取得了显著的进展。诸如GPT-3、BERT等模型在各种任务中表现出色,从文本生成到翻译,再到问答系统,几乎无所不能。这些模型的成功离不开庞大的训练数据集和复杂的算法架构。然而,如何有效地构建和利用开源指令数据集,仍然是一个值得深入探讨的话题。2.核
- Unity 中 Boids 算法:模拟群体行为的奇妙世界
阿贾克斯的黎明
游戏开发unity算法游戏引擎
目录Unity中Boids算法:模拟群体行为的奇妙世界一、Boids算法适用场景二、Boids算法基本原理三、在Unity中实现Boids算法在Unity游戏开发的广袤天地里,模拟逼真的群体行为能够为游戏增添丰富的动态与真实感。Boids算法作为实现这一效果的强大工具,被广泛应用于模拟鸟群翱翔、鱼群洄游、兽群迁徙等场景。本文将深入探讨Unity中Boids算法的应用,包括适用场景、实现方式及代码示
- 算法题(98):大数加法
被AI抢饭碗的人
算法题算法
审题:本题需要我们解决大数加法,大数直接运算会超出范围,所以我们需要转换成字符串一位位进行计算思路:方法一:高精度加法我们将两个大数的每一个位分别计算,然后头插到answer字符串中即可解题:1.由于我们是从个位开始计算,而字符串的存储size-1的位置才是个位的位置,我们就把j和i初始化为size-1.2.当有进位或两个大数还有数据的时候,我们进行大数加法。3.字符串的头插可以使用=和+号实现,
- kaggle-ISIC 2024 - 使用 3D-TBP 检测皮肤癌-学习笔记
supernova121
学习笔记
问题描述:通过从3D全身照片(TBP)中裁剪出单个病变来识别经组织学确诊的皮肤癌病例数据集描述:图像+临床文本信息评价指标:pAUC,用于保证敏感性高于指定阈值下的AUC主流方法分析(文本)基于CatBoost、LGBM和XGBoost三者的组合,为每个算法创建了XX个变体,总共XX个模型,进行集成学习。CatBoost在传统梯度提升决策树(GBDT)基础上,引入了一系列关键技术创新,以提升处理类
- 智能化开发新时代:DeepSeek加持下的编程革命
MoonbeamOwl67
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE标题:智能化开发新时代:DeepSeek加持下的编程革命在当今快速发展的科技时代,软件开发已经成为推动社会进步的重要动力。然而,对于许多开发者而言,编写高质量的代码仍然是一项充满挑战的任务。从复杂的算法设计到繁琐的调试过程,每一个环节都需要耗费大量的时间和精力。而随着人工智能技术的迅猛发展,一种全新的编程方式正在悄然改变这
- 【JCR一区级】被囊群算法TSA-Transformer-GRU负荷数据回归预测【含Matlab源码 6309期】
Matlab武动乾坤
matlab
Matlab武动乾坤博客之家
- 深入解析LTE-A到5G的系统消息架构与功能演进
罗博深
本文还有配套的精品资源,点击获取简介:系统消息是移动通信网络中,UE与网络间信息交换的核心,涵盖了网络状态、服务信息与系统配置。文章深入分析了4GLTE-A到5G网络中系统消息的组成、作用及其演进,包括MIB和SIBs的功能与内容,以及5G对系统消息的优化和新技术的引入,如动态调度、网络切片和针对物联网设备的特定参数配置。5G系统消息还通过机器学习和大数据分析实现智能化分发,增强了网络灵活性、智能
- 解决约束多目标优化问题的新方法:MOEA/D-DAE算法深度解析
木子算法
多目标优化人工智能算法多目标人工智能
解决约束多目标优化问题的新方法:MOEA/D-DAE算法深度解析在工程优化、机器学习等众多领域,约束多目标优化问题(CMOPs)广泛存在。传统方法在处理这类问题时,常因可行区域不连通或约束违反局部极小点陷入停滞。近期,IEEETransactionsonEvolutionaryComputation上的一篇论文提出了一种新颖的解决方案——MOEA/D-DAE算法,通过结合检测-逃逸策略(DAE)和
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio