- 云原生边缘计算:分布式智能的时代黎明
桂月二二
云原生边缘计算分布式
引言:从集中式算力到万物智联的范式裂变AT&T边缘节点部署超5000个,特斯拉自动驾驶系统每节点200TOPS算力。国家电网通过边缘计算实现毫秒级电网故障隔离,菜鸟物流分拣效率提升400%。IDC预测2027年边缘基础设施支出将达亿,宝马汽车工厂设备预测性维护准确率达9亿运维成本。一、边缘计算范式进化论1.1算力拓扑结构演变世代大型主机中心化云计算分布式雾计算去中心化边缘计算泛在化神经形态计算体计
- 项目复盘:卓越项目经理的炼金术——将经验转化为组织黄金的终极法则
一、项目复盘的时空坐标:生命周期的涅槃时刻在NASA的项目管理体系中,复盘被称为"经验汲取引擎",位于项目生命周期末端却影响未来所有项目起点。真正的复盘不是终点悼词,而是组织进化的基因重组。阶段复盘:敏捷开发每2周举行迭代复盘,如特斯拉软件团队通过156次迭代复盘将自动驾驶误判率降低83%终局复盘:波音787项目历时7年的终局复盘形成《复合材料应用手册》,成为航空业标准跨期复盘:华为建立"五年战略
- 泛型擦除和TypeToken
liudachu
java
泛型可以让代码更加通用,但同时也可能会导致一些类型信息在运行时丢失,这就是所谓的类型擦除。Guava的TypeToken帮咱们巧妙地解决了这个问题。第1章:泛型编程的挑战先来说说泛型。在Java中,泛型是一种在编译时进行类型检查的机制。它让咱们能在类、接口、方法中使用类型参数,比如List或者Map。这样的好处是代码更安全,更易读,同时还能重用。但是,泛型也有个大问题——类型擦除。听起来有点高深,
- 大模型时代的知识焦虑
机载软件与适航
机器学习-建模算法-代理模型人工智能大数据
引言:浪潮之巅,焦虑暗涌大模型时代已经浩荡而来,如同奔腾的浪潮,以令人惊叹的速度重塑着世界的面貌。从智能客服的温声细语,到AI绘画的妙笔生花,再到自动驾驶的日趋成熟,大型语言模型、图像模型等人工智能技术以前所未有的姿态,渗透进我们生活的方方面面。信息获取前所未有的便捷,知识创造空前高效,人机交互焕然一新,一个充满无限可能的智能化未来似乎触手可及。然而,在这令人眼花缭乱的技术盛景之下,一股无形的焦虑
- 图像分割技术的应用
不要不开心了
计算机视觉dashpython
今天的内容为:图像分割技术与应用,以下是内容总结1.图像分割概述图像分割是指预测目标的轮廓,将不同的像素划分到不同的类别,属于非常细粒度的分类任务。其应用场景广泛,包括人像抠图、医学组织提取、遥感图像分析、自动驾驶、材料图像分析等。2.图像分割的前景与背景-物体(Things):可数的前景目标,如行人、车辆等。-事物(Stuff):不可数的背景,如天空、草地、路面等。3.图像分割的三层境界-语义分
- Stream流与Guava工具类使用
小薛博客
guava数据库java
Stream流与Guava工具类使用小薛博客官方地址Stream流与Guava工具类使用1、StreamAPI1、了解StreamJava8中有两大最为重要的改变。第一个是Lambda表达式;另外一个则是StreamAPI(java.util.stream.*)。Stream是Java8中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。使用S
- 智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算【超级详细版】
AI筑梦师
计算机视觉算法深度学习人工智能机器学习计算机视觉python
智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算1.引言1.1研究背景在计算机视觉、模式识别、医学影像分析和自动驾驶等领域,形状匹配是核心任务之一。然而,现实世界的形状往往存在可变性(Variability),主要体现在以下几个方面:形变(Deformation):物体可能由于柔性材料、外力作用或生物运动发生非刚性形变。尺度变化(ScaleVariation):目标形状在不同场景下可能大
- 人工智能的未来:从基础到前沿的探索与展望
小二爱编程·
人工智能aiAI编程AI写作AI作画
1.人工智能简介内容概述:人工智能(AI)是指模拟和执行人类智能任务的技术。随着计算能力和数据量的增加,AI在各个领域取得了显著进展,从自动化的基本任务到解决复杂的实际问题,人工智能正渗透到我们生活的各个方面。2.人工智能的种类与发展内容概述:AI的种类可以按智能的复杂度分为三大类:弱人工智能(NarrowAI):目前大多数应用都属于弱AI,如语音助手、自动驾驶等。它们专注于特定任务,并且无法扩展
- C++智能指针:从内存裸奔到安全驾驶(附保姆级代码示例)
灰灰的C旅程
随时随地C++C/C++c++安全开发语言
大家好呀,我是灰灰,上期咱们聊完引用,不少小伙伴在评论区哭诉内存泄漏的惨痛经历。今天咱们就来解锁C++的"自动驾驶"神器——智能指针!从此告别new/delete的手动挡时代,系好安全带,发车啦!一、智能指针是什么?为什么需要它?1.1手动管理内存的痛void作死示例(){int*裸指针=newint[10086];//申请//...一顿操作猛如虎...if(rand()%2)return;//5
- 自动驾驶---打造自动驾驶系统之导航模块开发(三)
智能汽车人
从零打造自动驾驶算法仿真系统自动驾驶人工智能机器学习
各位读者朋友,大家好。本次打造的自动驾驶系统仿真系统,涉及感知,预测,规控等多个模块(以规控算法为主,包括Polynomial预测,MCTS决策算法,通行走廊Corridor构建,QP/CILQR轨迹生成求解器,LQR+PID的控制器等),同时也支持其它相关规控算法的扩展(部署&开发自身感兴趣的算法),非常便捷。笔者在该系列中开发的规控算法主要依据专栏《自动驾驶Planning决策规划》中的章节逐
- 自建智能算力中心 vs 第三方算力租赁:AI企业的算力博弈与最优解
人工智能的爆发式增长正在重塑全球产业格局。从ChatGPT到DeepSeek,从自动驾驶到智能医疗,AI模型的训练和推理需求呈现指数级增长。在这场技术革命中,算力已成为企业竞争的“命脉”。然而,面对动辄数亿元的硬件投入和复杂的运维挑战,AI企业正面临一个关键抉择:自建智能算力中心,还是选择第三方算力租赁?本文将从成本、效率、风险及适用场景等维度展开深度分析,为企业提供决策参考。一、成本对比:重资产
- 自动驾驶中控制模块状态机的作用与设计方法
程序员龙一
自动驾驶自动驾驶状态机control
问题解答:一、车辆状态机在自动驾驶控制模块中的核心作用在自动驾驶系统中,状态机(StateMachine)是控制模块的核心逻辑框架,用于管理车辆在不同运行阶段的行为和状态切换。其核心优势体现在以下几个方面:1.系统行为的模块化与可维护性模块化分层管理:状态机将复杂的车辆行为(如启动、停车、紧急避障、车道保持等)分解为独立的状态模块。每个状态专注于单一功能(例如“车道保持”状态仅处理横向控制),降低
- 光学工程师中年危机
光学设计培训
激光雷达光学设计zemax光学光学工程
一、技术能力突围:向高价值领域迁移瞄准增量市场激光雷达与自动驾驶:将光学设计经验迁移至激光雷达光路优化(如VCSEL阵列准直算法)、热稳定性补偿算法(解决车载环境温度漂移问题)15。AR/VR光学模组:参与超表面透镜(Metasurface)设计,结合波导与全息技术提升显示效率,掌握LightTools或LucidShape光场仿真37。强化算法能力光学-算法交叉技能:从
- 智能未来,程易科技引领AI新纪元——全新云智AI人工智能平台产品发布
DSP数字化服务平台
科技人工智能
在数字化浪潮的推动下,人工智能(AI)正以前所未有的速度改变着我们的世界。从自动驾驶汽车到个性化推荐系统,从智能客服到医疗诊断,AI的应用场景日益广泛,其背后的技术支撑也变得越来越重要。在这个背景下,程易科技专注于企业数字化、高性能计算、前后处理、AI技术研究与应用等领域的创新企业,2024年6月正式推出其最新的人工智能平台V5.0产品,云智AI人工智能平台,旨在为企业和开发者提供一站式的AI解决
- 人工智能伦理与可持续发展
CarlowZJ
人工智能
前言人工智能(AI)技术正在深刻地改变我们的生活和工作方式。从自动驾驶汽车到智能医疗系统,从个性化推荐到自动化决策,AI的应用无处不在。然而,随着技术的快速发展,其伦理和社会影响也引发了广泛的关注。人工智能伦理不仅涉及技术本身的公平性、透明性和安全性,还涉及到更广泛的社会、经济和环境影响。本文将探讨人工智能伦理的核心问题,并从可持续发展的角度提出应对策略。一、人工智能伦理的核心问题1.1数据隐私与
- 自动驾驶中间件技术对比
小牛蛋
自动驾驶中间件
转载:自动驾驶中间件技术辨析:ROS、Apex.Grace、DDS、AutoSAR和AutoSARAdaptive-CSDN博客在自动驾驶技术的演进中,中间件作为连接硬件、操作系统与应用软件的核心枢纽,其安全性、实时性和可扩展性至关重要。当前市场上主流的中间件技术包括ROS/ROS2、Apex.Grace(Apex.OS)、DDS、AutoSAR(经典平台CP)和AutoSARAdaptive(自
- Python编码系列—Python代码重构:提升代码质量
学步_技术
Python编码python重构开发语言
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- A survey on instance segmentation: state of the art——论文笔记
栀子清茶
1024程序员节论文阅读计算机视觉人工智能笔记学习
摘要这篇论文综述了实例分割的研究进展,定义其为同时解决对象检测和语义分割的问题。论文讨论了实例分割的背景、面临的挑战、技术演变、常用数据集,并总结了相关领域的最新成果和未来研究方向。实例分割的发展从粗略的对象分类逐步演变为更精细的像素级别推理,广泛应用于自动驾驶、机器人等领域。论文为研究人员提供了对实例分割领域的全面了解和有价值的参考。一、简介第一部分“简介”主要介绍了实例分割的背景、定义和挑战。
- SOVD-Service Oriented Vehicle Diagnostic
诊断协议那些事儿
诊断协议那些事儿经验分享车载系统
文章目录前言一、SOVD是什么二、SOVD的设计目的三、应用场景四、SOVD架构前言随着自动驾驶技术的发展,车辆配置变得越来越复杂,车载软件也在迅速增长:基于HPC(高性能计算机)、异构操作系统、大量并行进程及其依赖关系的新架构也给诊断工作带来了重大挑战。诊断的重点从识别硬件错误逐渐扩展到分析软件问题,因此带来了巨大的挑战。因为车辆的内容是动态变化的,同时当诊断通信被用于控制车辆复杂的更新过程时,
- Java 大视界 -- Java 大数据在智慧交通自动驾驶仿真与测试数据处理中的应用(136)
青云交
大数据新视界Java大视界java大数据自动驾驶智慧交通仿真测试数据处理数据存储
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- YOLO优化之扫描融合模块(SimVSS Block)
清风AI
人工智能计算机视觉YOLO目标检测深度学习目标跟踪
研究背景在自动驾驶技术快速发展的背景下,目标检测作为其核心组成部分面临着严峻挑战。驾驶场景中目标尺度和大小的巨大差异,以及视觉特征不显著且易受噪声干扰的问题,对辅助驾驶系统的安全性构成了潜在威胁。传统的卷积神经网络(CNN)虽然在目标检测领域取得了显著进展,但仍存在局限性,如局部关注性导致难以有效检测不同尺度的目标。为克服这些问题,研究人员开始探索将状态空间模型(SSM)引入目标检测领域,以期提高
- 【解锁机器学习:探寻数学基石】
游戏乐趣
机器学习人工智能
机器学习中的数学基础探秘在当今数字化时代,机器学习无疑是最具影响力和发展潜力的技术领域之一。从图像识别到自然语言处理,从智能推荐系统到自动驾驶,机器学习的应用无处不在,深刻地改变着我们的生活和工作方式。然而,在这看似神奇的机器学习背后,数学作为其坚实的理论基础,起着不可或缺的关键作用。毫不夸张地说,数学是打开机器学习大门的钥匙,是理解和掌握机器学习算法与模型的核心所在。想象一下,机器学习就像是一座
- DeepSeek:全栈开发者视角下的AI革命者
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3人工智能
DeepSeek:全栈开发者视角下的AI革命者写在前面随着人工智能(AI)技术的不断进步,AI已经成为各行各业创新的核心动力。从自动驾驶到智能制造,再到自然语言处理和图像识别,AI正在逐渐渗透并改变着我们的生活和工作方式。DeepSeek,作为AI领域的新兴技术,凭借其独特的技术架构和颠覆性的创新理念,成为了全栈开发者关注的焦点。本文将从全栈开发者的角度出发,详细解析DeepSeek的诞生、技术架
- NPU的应用场景:从云端到边缘
绿算技术
NPU架构介绍缓存人工智能科技深度学习
NPU的应用场景非常广泛,主要包括以下几个方面:1.云计算与数据中心AI推理服务:在云端提供高效的AI推理服务,例如图像识别、语音识别。模型训练加速:在大规模训练任务中,NPU可以作为加速单元,提升训练效率。2.边缘计算智能摄像头:在安防监控中,NPU可以实时处理视频流,实现目标检测和跟踪。智能音箱:在语音助手中,NPU可以加速语音识别和自然语言处理任务。3.自动驾驶实时感知:NPU可以加速自动驾
- 谷歌Gemini 3大模型发布,AI领域再掀波澜!
广拓科技
人工智能
在人工智能的浩瀚宇宙中,每一次重大突破都如同一颗璀璨的新星,照亮我们对未来的想象。而近期,谷歌发布的Gemini3大模型,无疑是其中最为耀眼的存在,它在AI领域激起的波澜,迅速蔓延至全球科技圈,引发了广泛关注与热烈讨论。随着AI技术的迅猛发展,我们已经见证了众多令人惊叹的创新成果。从智能语音助手到图像识别技术,从自动驾驶汽车到医疗诊断辅助系统,AI正以前所未有的速度改变着我们的生活和工作方式。在这
- 【大一新生必收藏系列】❤机器学习7大方面,30个数据集。纯干货分享❤
.Boss.
机器学习人工智能python算法开发语言笔记#大一新生
.记住了就可以跟同学装起来了嗷....目录.纯干货回归问题分类问题图像分类文本情感分析自然语言处理自动驾驶金融类...........纯干货..................在刚刚开始学习算法的时候,大家有没有过这种感觉,最最重要的那必须是算法本身!其实在一定程度上忽略了数据的重要性。而事实上一定是,质量高的数据集可能是最重要的!数据集在机器学习算法项目中具有非常关键的重要性,数据集的大小、质量
- 目标检测中衡量模型速度和精度的指标:FPS和mAP
asdfg1258963
目标检测_ai目标检测人工智能
“FPS”和“mAP”分别衡量了模型的速度和精度。FPS(FramesPerSecond)定义:FPS是“每秒传输帧数”的缩写,用于衡量计算机视觉系统(如目标检测、图像识别等)的实时性能。它表示系统每秒钟能够处理的图像或视频帧的数量。重要性:在实时应用中,如自动驾驶、视频监控等,FPS是一个关键指标。高FPS意味着系统能够快速处理输入的图像数据,实现实时响应。计算方式:FPS可以通过以下公式计算:
- Spring Cache的基本使用
奇怪的大象
面试学习路线阿里巴巴springjava后端
文章目录一、概述二、SpringCache的使用2.1环境搭建2.2缓存的读模式@Cacheable2.3自定义缓存配置
[email protected]@CacheEvict删除缓存2.6@Caching多个操作三、SpringCache的不足一、概述常见的缓存的框架有Redis、Memcached、Guava、Caffeine等等,各有各的优势。如果我们的程序想要使用缓存,就要与这些框架耦合。聪明
- C/C++都有哪些开源的Web框架?
草原上唱山歌
笔记c++开源前端
CppCMSCppCMS是一个采用C++语言开发的高性能Web框架,通过模版元编程方式实现了在编译期检查RESTful路由系统,支持传统的MVC模式和多种语言混合开发模式。CppCMS最厉害的功能是WebSocket,10万连接在内存中长期保存占用的大小不超过600MB,直接将WS和Node.js甩几条街。某自动驾驶公司的OTA服务使用该框架构建API网关,在编译阶段完成所有的接口参数校验,软件运
- MCU与SOC的区别
winds~
ADAS相关单片机嵌入式硬件
自动驾驶中MCU与SoC的区别在自动驾驶系统中,**MCU(微控制单元,MicrocontrollerUnit)和SoC(系统级芯片,SystemonChip)**都是关键的电子元件,但它们在性能、功能和应用领域等方面存在显著区别。一、定义与基本概念1.MCU(微控制单元)组成:MCU是一种集成了处理器核心(通常为微型处理器)、内存(如闪存和RAM)以及输入/输出(I/O)接口的单片集成电路。特点
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理