在Objective-C的内存管理中,其实就是引用计数(reference count)的管理。内存管理就是在程序需要时程序员分配一段内存空间,而当使用完之后将它释放。如果程序员对内存资源使用不当,有时不仅会造成内存资源浪费,甚至会导致程序crach。我们将会从引用计数和内存管理规则等基本概念开始,然后讲述有哪些内存管理方法,最后注意有哪些常见内存问题。
memory management from apple document
基本概念
引用计数(Reference Count)
为了解释引用计数,我们做一个类比:员工在办公室使用灯的情景。
引用Pro Multithreading and Memory Management for iOS and OS X的图
当第一个人进入办公室时,他需要使用灯,于是开灯,引用计数为1
当另一个人进入办公室时,他也需要灯,引用计数为2;每当多一个人进入办公室时,引用计数加1
当有一个人离开办公室时,引用计数减1,当引用计数为0时,也就是最后一个人离开办公室时,他不再需要使用灯,关灯离开办公室。
内存管理规则
从上面员工在办公室使用灯的例子,我们对比一下灯的动作与Objective-C对象的动作有什么相似之处:
灯的动作 Objective-C对象的动作
因为我们是通过引用计数来管理灯,那么我们也可以通过引用计数来管理使用Objective-C对象。
引用Pro Multithreading and Memory Management for iOS and OS X的图
而Objective-C对象的动作对应有哪些方法以及这些方法对引用计数有什么影响?
当你alloc一个对象objc,此时RC=1;在某个地方你又retain这个对象objc,此时RC加1,也就是RC=2;由于调用alloc/retain一次,对应需要调用release一次来释放对象objc,所以你需要release对象objc两次,此时RC=0;而当RC=0时,系统会自动调用dealloc方法释放对象。
Autorelease Pool
在开发中,我们常常都会使用到局部变量,局部变量一个特点就是当它超过作用域时,就会自动释放。而autorelease pool跟局部变量类似,当执行代码超过autorelease pool块时,所有放在autorelease pool的对象都会自动调用release。它的工作原理如下:
创建一个NSAutoreleasePool对象
在autorelease pool块的对象调用autorelease方法
释放NSAutoreleasePool对象
引用Pro Multithreading and Memory Management for iOS and OS X的图
iOS 5/OS X Lion前的(等下会介绍引入ARC的写法)实例代码如下:
1
2
3
4
5
6
7
8
9
|
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
// put object into pool
id obj = [[NSObject alloc] init];
[obj autorelease];
[pool drain];
/* 超过autorelease pool作用域范围时,obj会自动调用release方法 */
|
由于放在autorelease pool的对象并不会马上释放,如果有大量图片数据放在这里的话,将会导致内存不足。
1
2
3
4
5
6
7
8
|
for (int i = 0; i < numberOfImages; i++)
{
/* 处理图片,例如加载
* 太多autoreleased objects存在
* 由于NSAutoreleasePool对象没有被释放
* 在某个时刻,会导致内存不足
*/
}
|
ARC管理方法
iOS/OS X内存管理方法有两种:手动引用计数(Manual Reference Counting)和自动引用计数(Automatic Reference Counting)。从OS X Lion和iOS 5开始,不再需要程序员手动调用retain和release方法来管理Objective-C对象的内存,而是引入一种新的内存管理机制Automatic Reference Counting(ARC),简单来说,它让编译器来代替程序员来自动加入retain和release方法来持有和放弃对象的所有权。
在ARC内存管理机制中,id和其他对象类型变量必须是以下四个ownership qualifiers其中一个来修饰:
__strong(默认,如果不指定其他,编译器就默认加入)
__weak
__unsafe_unretained
__autoreleasing
所以在管理Objective-C对象内存的时候,你必须选择其中一个,下面会用一些列子来逐个解释它们的含义以及如何选择它们。
__strong ownership qualifier
如果我想创建一个字符串,使用完之后将它释放调用,使用MRC管理内存的写法应该是这样:
1
2
3
4
5
|
{
NSString *text = [[NSString alloc] initWithFormat:@ "Hello, world" ]; //@"Hello, world"对象的RC=1
NSLog(@ "%@" , text);
[text release]; //@"Hello, world"对象的RC=0
}
|
而如果是使用ARC方式的话,就text对象无需调用release方法,而是当text变量超过作用域时,编译器来自动加入[text release]方法来释放内存
1
2
3
4
5
6
7
|
{
NSString *text = [[NSString alloc] initWithFormat:@ "Hello, world" ]; //@"Hello, world"对象的RC=1
NSLog(@ "%@" , text);
}
/*
* 当text超过作用域时,@"Hello, world"对象会自动释放,RC=0
*/
|
而当你将text赋值给其他变量anotherText时,MRC需要retain一下来持有所有权,当text和anotherText使用完之后,各个调用release方法来释放。
1
2
3
4
5
6
7
8
9
10
11
|
{
NSString *text = [[NSString alloc] initWithFormat:@ "Hello, world" ]; //@"Hello, world"对象的RC=1
NSLog(@ "%@" , text);
NSString *anotherText = text; //@"Hello, world"对象的RC=1
[anotherText retain]; //@"Hello, world"对象的RC=2
NSLog(@ "%@" , anotherText);
[text release]; //@"Hello, world"对象的RC=1
[anotherText release]; //@"Hello, world"对象的RC=0
}
|
而使用ARC的话,并不需要调用retain和release方法来持有跟释放对象。
1
2
3
4
5
6
7
8
9
10
|
{
NSString *text = [[NSString alloc] initWithFormat:@ "Hello, world" ]; //@"Hello, world"对象的RC=1
NSLog(@ "%@" , text);
NSString *anotherText = text; //@"Hello, world"对象的RC=2
NSLog(@ "%@" , anotherText);
}
/*
* 当text和anotherText超过作用域时,会自动调用[text release]和[anotherText release]方法, @"Hello, world"对象的RC=0
*/
|
除了当__strong变量超过作用域时,编译器会自动加入release语句来释放内存,如果你将__strong变量重新赋给它其他值,那么编译器也会自动加入release语句来释放变量指向之前的对象。例如:
1
2
3
4
5
6
7
8
9
|
{
NSString *text = [[NSString alloc] initWithFormat:@ "Hello, world" ]; //@"Hello, world"对象的RC=1
NSString *anotherText = text; //@"Hello, world"对象的RC=2
NSString *anotherText = [[NSString alloc] initWithFormat:@ "Sam Lau" ]; // 由于anotherText对象引用另一个对象@"Sam Lau",那么就会自动调用[anotherText release]方法,使得@"Hello, world"对象的RC=1, @"Sam Lau"对象的RC=1
}
/*
* 当text和anotherText超过作用域时,会自动调用[text release]和[anotherText release]方法,
* @"Hello, world"对象的RC=0和@"Sam Lau"对象的RC=0
*/
|
如果变量var被__strong修饰,当变量var指向某个对象objc,那么变量var持有某个对象objc的所有权
前面已经提过内存管理的四条规则:
我们总结一下编译器是按以下方法来实现的:
对于规则1和规则2,是通过__strong变量来实现,
对于规则3来说,当变量超过它的作用域或被赋值或成员变量被丢弃时就能实现
对于规则4,当RC=0时,系统就会自动调用
__weak ownership qualifier
其实编译器根据__strong修饰符来管理对象内存。但是__strong并不能解决引用循环(Reference Cycle)问题:对象A持有对象B,反过来,对象B持有对象A;这样会导致不能释放内存造成内存泄露问题。
引用Pro Multithreading and Memory Management for iOS and OS X的图
举一个简单的例子,有一个类Test有个属性objc,有两个对象test1和test2的属性objc互相引用test1和test2:
1
2
3
|
@interface Test : NSObject
@property (strong, nonatomic) id objc;
@end
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
{
Test *test1 = [Test new ]; /* 对象a */
/* test1有一个强引用到对象a */
Test *test2 = [Test new ]; /* 对象b */
/* test2有一个强引用到对象b */
test1.objc = test2; /* 对象a的成员变量objc有一个强引用到对象b */
test2.objc = test1; /* 对象b的成员变量objc有一个强引用到对象a */
}
/* 当变量test1超过它作用域时,它指向a对象会自动release
* 当变量test2超过它作用域时,它指向b对象会自动release
*
* 此时,b对象的objc成员变量仍持有一个强引用到对象a
* 此时,a对象的objc成员变量仍持有一个强引用到对象b
* 于是发生内存泄露
*/
|
如何解决?于是我们引用一个__weakownership qualifier,被它修饰的变量都不持有对象的所有权,而且当变量指向的对象的RC为0时,变量设置为nil。例如:
1
2
|
__weak NSString *text = [[NSString alloc] initWithFormat:@ "Sam Lau" ];
NSLog(@ "%@" , text);
|
由于text变量被__weak修饰,text并不持有@"Sam Lau"对象的所有权,@"Sam Lau"对象一创建就马上被释放,并且编译器给出警告,所以打印结果为(null)。
所以,针对刚才的引用循环问题,只需要将Test类的属性objc设置weak修饰符,那么就能解决。
1
2
3
|
@interface Test : NSObject
@property (weak, nonatomic) id objc;
@end
|
1
2
3
4
5
6
7
8
9
10
11
12
13
|
{
Test *test1 = [Test new ]; /* 对象a */
/* test1有一个强引用到对象a */
Test *test2 = [Test new ]; /* 对象b */
/* test2有一个强引用到对象b */
test1.objc = test2; /* 对象a的成员变量objc不持有对象b */
test2.objc = test1; /* 对象b的成员变量objc不持有对象a */
}
/* 当变量test1超过它作用域时,它指向a对象会自动release
* 当变量test2超过它作用域时,它指向b对象会自动release
*/
|
__unsafe_unretained ownership qualifier
__unsafe_unretained ownership qualifier,正如名字所示,它是不安全的。它跟__weak相似,被它修饰的变量都不持有对象的所有权,但当变量指向的对象的RC为0时,变量并不设置为nil,而是继续保存对象的地址;这样的话,对象有可能已经释放,但继续访问,就会造成非法访问(Invalid Access)。例子如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
__unsafe_unretained id obj0 = nil;
{
id obj1 = [[NSObject alloc] init]; // 对象A
/* 由于obj1是强引用,所以obj1持有对象A的所有权,对象A的RC=1 */
obj0 = obj1;
/* 由于obj0是__unsafe_unretained,它不持有对象A的所有权,但能够引用它,对象A的RC=1 */
NSLog(@ "A: %@" , obj0);
}
/* 当obj1超过它的作用域时,它指向的对象A将会自动释放 */
NSLog(@ "B: %@" , obj0);
/* 由于obj0是__unsafe_unretained,当它指向的对象RC=0时,它会继续保存对象的地址,所以两个地址相同 */
|
打印结果是内存地址相同:
如果将__unsafe_unretained改为weak的话,两个打印结果将不同
1
2
3
4
5
6
7
8
9
10
11
12
13
|
__weak id obj0 = nil;
{
id obj1 = [[NSObject alloc] init]; // 对象A
/* 由于obj1是强引用,所以obj1持有对象A的所有权,对象A的RC=1 */
obj0 = obj1;
/* 由于obj0是__unsafe_unretained,它不持有对象A的所有权,但能够引用它,对象A的RC=1 */
NSLog(@ "A: %@" , obj0);
}
/* 当obj1超过它的作用域时,它指向的对象A将会自动释放 */
NSLog(@ "B: %@" , obj0);
/* 由于obj0是__weak, 当它指向的对象RC=0时,它会自动设置为nil,所以两个打印结果将不同*/
|
__autoreleasing ownership qualifier
引入ARC之后,让我们看看autorelease pool有哪些变化。没有ARC之前的写法如下:
1
2
3
4
5
6
7
8
9
|
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
// put object into pool
id obj = [[NSObject alloc] init];
[obj autorelease];
[pool drain];
/* 超过autorelease pool作用域范围时,obj会自动调用release方法 */
|
引入ARC之后,写法比之前更加简洁:
1
2
3
|
@autoreleasepool {
id __autoreleasing obj = [[NSObject alloc] init];
}
|
相比之前的创建、使用和释放NSAutoreleasePool对象,现在你只需要将代码放在@autoreleasepool块即可。你也不需要调用autorelease方法了,只需要用__autoreleasing修饰变量即可。
引用Pro Multithreading and Memory Management for iOS and OS X的图
但是我们很少或基本上不使用autorelease pool。当我们使用XCode创建工程后,有一个app的入口文件main.m使用了它:
1
2
3
4
5
|
int main(int argc, char * argv[]) {
@autoreleasepool {
return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));
}
}
|
Property(属性)
有了ARC之后,新的property modifier也被引入到Objective-C类的property,例如:
1
|
@property (strong, nonatomic) NSString *text;
|
下面有张表来展示property modifier与ownership qualifier的对应关系
总结
要想掌握iOS/OS X的内存管理,首先要深入理解引用计数(Reference Count)这个概念以及内存管理的规则;在没引入ARC之前,我们都是通过retain和release方法来手动管理内存,但引入ARC之后,我们可以借助编译器来帮忙自动调用retain和release方法来简化内存管理和减低出错的可能性。虽然__strong修饰符能够执行大多数内存管理,但它不能解决引用循环(Reference Cycle)问题,于是又引入另一个修饰符__weak。被__strong修饰的变量都持有对象的所有权,而被__weak修饰的变量并不持有对象所有权。下篇我们介绍使用工具如何解决常见内存问题:悬挂指针和内存泄露。
参考资料
Pro Multithreading and Memory Management for iOS and OS X
Advanced Memory Management Programming Guide