Flume是一个分布式的日志数据收集、聚合系统,它可以收集很多不同来源的数据到数据中心存储。
Flume Event是一个数据单元,body中包含一定字节的数据,headers包含一些属性,如时间戳。
Flume Agent是一个JVM进程,它运行程序组件,以便支持将数据从一个数据源清洗到目的源进行存储。
Flume Source消费从外部源传递给它的Event,外部源的发送Event格式必须与Source一致,以便Source能识别。当Source接收到Event,它将Event存储到一个或多个channels中。
Flume Channel是一个被动的存储,它会保存数据直到Flulme Sink主动消费其存储的数据。例如File Channel,它存储数据到本地filesystem。
Flume Sink从Channel中移除Event,并将Event的数据存储到目的源,例如HDFS。Sink也可以将数据发送到下一个Agent的source。
Flume Source和Flume Sink两者是异步的,各自分别与channel中的Event进行交流。
Source用于从指定接受Event来自那种类型,如kafka、thrift、tialdir等。
Exec Source在启动时执行给定的命令,并期望该指令进程持续产生数据输出到standard out。默认情况下stderr关闭,可通过logStdErr=true开启。如果进程因为任何原因退出了,Flume Source也会退出并不会产生数据了。例如,tail -F [file]将持续产生期望的结果,而date命令只产生一个Event并退出。
下表的粗体部分为必须属性,其他属性是可选属性。
Property Name | Default | Description |
---|---|---|
channels | - | |
type | - | exec |
command | - | 需要执行的命令,如 tail -F /log |
shell | - | 指定运行shell,如/bin/sh -c 指定使用sh执行command的内容 |
logStdERR | false | 是否输出标准错误的日志 |
batchSize | 20 | 一次发往channel的最大批次大小 |
batchTimeout | 3000 | 如果没达到buffer size,隔多久强行发送一次 |
restartThrottle | 10000 | 重试等待时间 |
restart | false | command失败死亡,是否重试 |
interceptors | - | 拦截器 |
关于ExecSource的注意要点,ExecSource无法提供任何保证确保数据不丢失,如果souce尝试将数据放入channel时失败,那么此条数据可能丢失。比如channel已经装满时,source还在发送,但是channel拒绝了接受。总之,ExecSource不够可信,对数据完整性要求较高时,可使用Spooling Directory Source,Taildir Source 。
#只包含必填属性的示例
a1.sources = r1
a1.channels = c1
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /var/log/secure
a1.sources.r1.channels = c1
Spooling Directory Source使用将数据放入spooling directory的形式引入数据,Spooling Directory Source会监控指定文件夹,并将新增的文件按照解析逻辑封装为Event,解析逻辑是可插拔的。当一个文件完全写入channel后,它会将文件后缀添加Completed,或者使用追踪文件记录,或者删除完成的文件。Spooling Directory Source是完全可信赖的,他存储了发送的信息,当重启和kill时不会丢失数据。
Spooling Directory Source使用要确保两点,1文件夹下的文件必须一成不变,一旦生成不会变动内容。2文件夹下文件不可重名。当然,其并非百分百可靠,这取决于下游任务是否发生一定的错误。
Property Name | Default | Description |
---|---|---|
channels | - | |
type | - | spooldir |
spoolDir | - | 监视的文件夹 |
fileSuffix | .COMPLETED | 完成后添加的后缀 |
deletePolicy | never | 是否删除完成的文件,never,immediate |
fileHeader | false | 在Event头部添加文件路径 |
fileHeaderKey | file | 添加的key |
batchSize | - | 同上文 |
trackingPolicy | - | 追踪策略,rename,tacker_dir |
trackerDir | .flumespool | 追踪文件存储地址 |
a1.channels = ch-1
a1.sources = src-1
a1.sources.src-1.type = spooldir
a1.sources.src-1.channels = ch-1
a1.sources.src-1.spoolDir = /var/log/apache/flumeSpool
a1.sources.src-1.fileHeader = true
note:此功能无法在windwos工作
监控特定的文本文件,并不断读取追加的内容,以行为单位封装为Event,发送到channels。
Taildir Source是可信的,当flume重启,kill时不会丢失数据。
Property Name | Default | Description |
---|---|---|
channels | – | |
type | – | TAILDIR |
filegroups | – | 文件组,表示一系列需要tail的文件。 |
filegroups.filegroupsName | – | 使用绝对路径表示需要监控的文件组,一般使用正则表示文件组。 |
#必须属性示例
a1.sources = r1
a1.channels = c1
a1.sources.r1.type = TAILDIR
a1.sources.r1.channels = c1
a1.sources.r1.filegroups = f1 f2
a1.sources.r1.filegroups.f1 = /var/log/test1/example.log
a1.sources.r1.headers.f1.headerKey1 = value1
a1.sources.r1.filegroups.f2 = /var/log/test2/.*log.*
Kafka Source是一个kafka consumer从对应topic读取消息。你可以配置多个kafka source,通过设置相同的groupid让他们读取不同的topic分区。
Property Name | Default | Description |
---|---|---|
channels | – | |
type | – | org.apache.flume.source.kafka.KafkaSource |
kafka.bootstrap.servers | – | broker的服务地址 |
kafka.consumer.group.id | flume | 为多个source设置相同的groupid,让他们作为同一个消费者组进行消费。 |
kafka.topics | – | 消费的topics |
kafka.topics.regex | – | 使用正则表示消费的topic,如果此参数存在会覆盖topics |
tier1.sources.source1.type = org.apache.flume.source.kafka.KafkaSource
tier1.sources.source1.channels = channel1
tier1.sources.source1.kafka.bootstrap.servers = localhost:9092
tier1.sources.source1.kafka.topics = test1, test2
tier1.sources.source1.type = org.apache.flume.source.kafka.KafkaSource
tier1.sources.source1.channels = channel1
tier1.sources.source1.kafka.bootstrap.servers = localhost:9092
tier1.sources.source1.kafka.topics.regex = ^topic[0-9]$
Property Name | Default | Description |
---|---|---|
deserializer.maxLineLength | 2048 | 单行最大字符数,超过的会被截断 |
deserializer.outputCharset | UTF-8 | 发送到channel的数据采用的字符编码 |
监听给定的端口,获取每一行的数据并发送
Property Name | Default | Description |
---|---|---|
channels | – | |
type | – | The component type name, needs to be netcat |
bind | – | Host name or IP address to bind to |
port | – | Port # to bind to |
a1.sources = r1
a1.channels = c1
a1.sources.r1.type = netcat
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 6666
a1.sources.r1.channels = c1
channels是为agent提供存储库用于存储Event,source向其添加,sink消费其中的Event。
使用内存队列存储接受的Event,1用于处理高吞吐量、高速度的数据流2必须能接受event失败导致的数据丢失结果。
Property Name | Default | Description |
---|---|---|
type | – | memory |
capacity | 100 | 最大event数目 |
transactionCapacity | 100 | source每个事务添加的最大event数目,和给予sink的最大数目。 |
keep-alive | 3 | source和sink交互的超时时间 |
byteCapacity | jvm -Xmx的80% | 最大字节数,默认为jvm -Xmx的80%。 |
a1.channels = c1
a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 10000
a1.channels.c1.byteCapacity = 800000
使用kafka集群作为存储Event的介质,必须是分布式kafka才能作为channel。
Property Name | Default | Description |
---|---|---|
type | – | org.apache.flume.channel.kafka.KafkaChannel |
kafka.bootstrap.servers | – | kafka集群的broker |
kafka.topic | flume-channel | 存储在哪个topic |
a1.channels.channel1.type = org.apache.flume.channel.kafka.KafkaChannel
a1.channels.channel1.kafka.bootstrap.servers = kafka-1:9092,kafka-2:9092,kafka-3:9092
a1.channels.channel1.kafka.topic = channel1
a1.channels.channel1.kafka.consumer.group.id = flume-consumer
Property Name Default | Description | |
---|---|---|
type | – | file |
checkpointDir | ~/.flume/file-channel/checkpoint | 检查点目录 |
a1.channels = c1
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /mnt/flume/checkpoint
a1.channels.c1.dataDirs = /mnt/flume/data
将event数据写入HDFS,目前支持创建sequence files和text,支持压缩。支持对hdfs存储目录进行分区,可以如下表格的转义字符生成分区目录
Alias | Description |
---|---|
%{host} | headers中的key为host的value |
%t | 毫秒时间milliseconds |
%a | 周几缩写 (Mon, Tue, …) |
%A | 周几完整名称 (Monday, Tuesday, …) |
%b | 月份缩写 (Jan, Feb, …) |
%B | 月份完整 (January, February, …) |
%c | datetime (Thu Mar 3 23:05:25 2005) |
%d | 该月几号(01) |
%e | 月份,无填充 (1) |
%D | 日期:%m/%d/%y |
%H | 小时(00…23) |
%I | 小时(01…12) |
%j | 一年的第几天 (001…366) |
%k | 小时,无填充( 0…23) |
%m | 月份(01…12) |
%n | 月份 (1…12) |
%M | 分钟(00…59) |
%p | 上午下午 am or pm |
%s | 自1970-01-01 00:00:00 UTC以来秒数 |
%S | 秒,(00…59) |
%y | 年的后两位(00…99) |
%Y | 年(2010) |
%z | 时区 (for example, -0400) |
%[localhost] | hostname of the host 主机名 |
%[IP] | IP address of the host 地址IP |
%[FQDN] | canonical hostname of the host 规范主机名 |
必须属性
Name | Default | Description |
---|---|---|
channel | – | |
type | – | hdfs |
hdfs.path | – | HDFS路径,可以使用前文的转义字符拼接路径 |
hdfs.rollInterval | 30 | 触发写入时间 |
hdfs.rollSize | 1024 | 触发写入大小,字节为单位 |
hdfs.rollCount | 10 | 触发写入event数目 |
a1.channels = c1
a1.sinks = k1
a1.sinks.k1.type = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = /flume/events/%y-%m-%d/%H%M/%S
a1.sinks.k1.hdfs.filePrefix = events-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = minute
Property Name | Default | Description |
---|---|---|
channel | – | |
type | – | file_roll . |
sink.directory | – | sink目录 |
a1.channels = c1
a1.sinks = k1
a1.sinks.k1.type = file_roll
a1.sinks.k1.channel = c1
a1.sinks.k1.sink.directory = /var/log/flume
https://flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html#flume-sources