linux 内存管理slab源码,Linux内核源代码情景分析-内存管理之slab-回收

0818b9ca8b590ca3270a3433284dd417.png

图 1

我们看到空闲slab块占用的若干页面,不会自己释放;我们是通过kmem_cache_reap和kmem_cache_shrink来回收的。他们的区别是:

0818b9ca8b590ca3270a3433284dd417.png

1、我们先看kmem_cache_shrink,代码如下:

int kmem_cache_shrink(kmem_cache_t *cachep)

{

if (!cachep || in_interrupt() || !is_chained_kmem_cache(cachep))

BUG();

return __kmem_cache_shrink(cachep);

}

__kmem_cache_shrink,代码如下:

static int __kmem_cache_shrink(kmem_cache_t *cachep)

{

slab_t *slabp;

int ret;

drain_cpu_caches(cachep);

spin_lock_irq(&cachep->spinlock);

/* If the cache is growing, stop shrinking. */

while (!cachep->growing) {//确定缓存区不在growing

struct list_head *p;

p = cachep->slabs.prev;//链表最后面的是空闲块,本例中就是第4个空闲块

if (p == &cachep->slabs)//如果链表中没有slab块,就直接break

break;

slabp = list_entry(cachep->slabs.prev, slab_t, list);

if (slabp->inuse)//如果不是空闲块,就break

break;

list_del(&slabp->list);//如果是空闲块就删除,这样下一次循环cachep->slabs.prev找的就是新的slab块

if (cachep->firstnotfull == &slabp->list)//如果firstnotfull就是这个空闲块,那么系统中一定没有部分块或者空闲块可供分配了

cachep->firstnotfull = &cachep->slabs;//指向cachep->slabs

spin_unlock_irq(&cachep->spinlock);

kmem_slab_destroy(cachep, slabp);//析构对象,并释放空闲slab块所在的所有页面

spin_lock_irq(&cachep->spinlock);

}

ret = !list_empty(&cachep->slabs);

spin_unlock_irq(&cachep->spinlock);

return ret;

}

kmem_slab_destroy,析构对象,并释放空闲slab块所在的所有页面,代码如下:

static void kmem_slab_destroy (kmem_cache_t *cachep, slab_t *slabp)

{

if (cachep->dtor

......

) {

int i;

for (i = 0; i < cachep->num; i++) {

void* objp = slabp->s_mem+cachep->objsize*i;

......

if (cachep->dtor)

(cachep->dtor)(objp, cachep, 0);//析构所有对象

......

}

}

kmem_freepages(cachep, slabp->s_mem-slabp->colouroff);//释放空闲slab块所占的所有页面

if (OFF_SLAB(cachep))

kmem_cache_free(cachep->slabp_cache, slabp);

}

kmem_freepages,释放空闲slab块所占的所有页面,代码如下:

static inline void kmem_freepages (kmem_cache_t *cachep, void *addr)

{

unsigned long i = (1

struct page *page = virt_to_page(addr);

/* free_pages() does not clear the type bit - we do that.

* The pages have been unlinked from their cache-slab,

* but their 'struct page's might be accessed in

* vm_scan(). Shouldn't be a worry.

*/

while (i--) {

PageClearSlab(page);

page++;

}

free_pages((unsigned long)addr, cachep->gfporder);

}

2、再看kmem_cache_reap,遍历cache_chain链表查找合适的缓存区,而且只释放了所选中的缓存区中最多80%的完全空闲slab块,代码如下:

void kmem_cache_reap (int gfp_mask)

{

slab_t *slabp;

kmem_cache_t *searchp;

kmem_cache_t *best_cachep;

unsigned int best_pages;

unsigned int best_len;

unsigned int scan;

if (gfp_mask & __GFP_WAIT)

down(&cache_chain_sem);

else

if (down_trylock(&cache_chain_sem))

return;

scan = REAP_SCANLEN;

best_len = 0;

best_pages = 0;

best_cachep = NULL;

searchp = clock_searchp;//上一次考察的缓存区

do {

unsigned int pages;

struct list_head* p;

unsigned int full_free;

/* It's safe to test this without holding the cache-lock. */

if (searchp->flags & SLAB_NO_REAP)

goto next;

spin_lock_irq(&searchp->spinlock);

if (searchp->growing)//缓存区不能处于增长状态

goto next_unlock;

if (searchp->dflags & DFLGS_GROWN) {

searchp->dflags &= ~DFLGS_GROWN;

goto next_unlock;

}

......

full_free = 0;

p = searchp->slabs.prev;//从空闲块开始

while (p != &searchp->slabs) {

slabp = list_entry(p, slab_t, list);

if (slabp->inuse)

break;

full_free++;//有一个空闲块,full_free就加1

p = p->prev;//往前继续搜索

}

/*

* Try to avoid slabs with constructors and/or

* more than one page per slab (as it can be difficult

* to get high orders from gfp()).

*/

pages = full_free * (1

if (searchp->ctor)

pages = (pages*4+1)/5;

if (searchp->gfporder)

pages = (pages*4+1)/5;//页面数的百分之80

if (pages > best_pages) {//找到空闲块所占页面数最多的

best_cachep = searchp;

best_len = full_free;//空闲块的个数

best_pages = pages;//若干空闲块所占的页面数的百分之80

if (full_free >= REAP_PERFECT) {

clock_searchp = list_entry(searchp->next.next,

kmem_cache_t,next);

goto perfect;

}

}

next_unlock:

spin_unlock_irq(&searchp->spinlock);

next:

searchp = list_entry(searchp->next.next,kmem_cache_t,next);

} while (--scan && searchp != clock_searchp);//遍历cache_chain链表查找合适的缓存区

clock_searchp = searchp;//这次考察的,也就是下次考察的开始

if (!best_cachep)//没有找到

/* couldn't find anything to reap */

goto out;

spin_lock_irq(&best_cachep->spinlock);

perfect:

/* free only 80% of the free slabs */

best_len = (best_len*4 + 1)/5;//空闲块个数的百分之80

for (scan = 0; scan < best_len; scan++) {//依次释放空闲块

struct list_head *p;

if (best_cachep->growing)//不能处于增长状态

break;

p = best_cachep->slabs.prev;//因为刚才空闲slab块已经删除,所以又指向了新的空闲slab块

if (p == &best_cachep->slabs)//说明所有slab块都已经被遍历过了,break

break;

slabp = list_entry(p,slab_t,list);

if (slabp->inuse)//不是空闲块,break

break;

list_del(&slabp->list);//删除空闲slab

if (best_cachep->firstnotfull == &slabp->list)//如果firstnotfull就是这个空闲块,那么系统中一定没有部分块或者空闲块可供分配了

best_cachep->firstnotfull = &best_cachep->slabs;//指向cachep->slabs

STATS_INC_REAPED(best_cachep);

/* Safe to drop the lock. The slab is no longer linked to the

* cache.

*/

spin_unlock_irq(&best_cachep->spinlock);

kmem_slab_destroy(best_cachep, slabp);//同上

spin_lock_irq(&best_cachep->spinlock);

}

spin_unlock_irq(&best_cachep->spinlock);

out:

up(&cache_chain_sem);

return;

}

你可能感兴趣的:(linux,内存管理slab源码)