python 基于aiohttp的异步爬虫实战详解

这篇文章主要为大家介绍了python 基于aiohttp的异步爬虫实战详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

python 基于aiohttp的异步爬虫实战详解_第1张图片

 

 引言

钢铁知识库,一个学习python爬虫、数据分析的知识库。人生苦短,快用python。

之前我们使用requests库爬取某个站点的时候,每发出一个请求,程序必须等待网站返回响应才能接着运行,而在整个爬虫过程中,整个爬虫程序是一直在等待的,实际上没有做任何事情。

像这种占用磁盘/内存IO、网络IO的任务,大部分时间是CPU在等待的操作,就叫IO密集型任务。对于这种情况有没有优化方案呢,当然有,那就是使用aiohttp库实现异步爬虫。

aiohttp是什么

我们在使用requests请求时,只能等一个请求先出去再回来,才会发送下一个请求。明显效率不高阿,这时候如果换成异步请求的方式,就不会有这个等待。一个请求发出去,不管这个请求什么时间响应,程序通过await挂起协程对象后直接进行下一个请求。

解决方法就是通过 aiohttp + asyncio,什么是aiohttp?一个基于 asyncio 的异步 HTTP 网络模块,可用于实现异步爬虫,速度明显快于 requests 的同步爬虫。

requests和aiohttp区别

区别就是一个同步一个是异步。话不多说直接上代码看效果。

安装aiohttp

1

pip install aiohttp

  • requests同步示例:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

#!/usr/bin/env python

# -*- coding: utf-8 -*-

# author: 钢铁知识库

import time

import requests

# 同步请求

def main():

    start = time.time()

    for i in range(5):

        res = requests.get('http://httpbin.org/delay/2')

        print(f'当前时间:{datetime.datetime.now()}, status_code = {res.status_code}')

    print(f'requests同步耗时:{time.time() - start}')

if __name__ == '__main__':

    main()

'''

当前时间:2022-09-05 15:44:51.991685, status_code = 200

当前时间:2022-09-05 15:44:54.528918, status_code = 200

当前时间:2022-09-05 15:44:57.057373, status_code = 200

当前时间:2022-09-05 15:44:59.643119, status_code = 200

当前时间:2022-09-05 15:45:02.167362, status_code = 200

requests同步耗时:12.785893440246582

'''

可以看到5次请求总共用12.7秒,再来看同样的请求异步多少时间。

  • aiohttp异步示例:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

#!/usr/bin/env python

# file: day6-9同步和异步.py

# author: 钢铁知识库

import asyncio

import time

import aiohttp

async def async_http():

    # 声明一个支持异步的上下文管理器

    async with aiohttp.ClientSession() as session:

        res = await session.get('http://httpbin.org/delay/2')

        print(f'当前时间:{datetime.datetime.now()}, status_code = {res.status}')

tasks = [async_http() for _ in range(5)]

start = time.time()

# Python 3.7 及以后,不需要显式声明事件循环,可以使用 asyncio.run()来代替最后的启动操作

asyncio.run(asyncio.wait(tasks))

print(f'aiohttp异步耗时:{time.time() - start}')

'''

当前时间:2022-09-05 15:42:32.363966, status_code = 200

当前时间:2022-09-05 15:42:32.366957, status_code = 200

当前时间:2022-09-05 15:42:32.374973, status_code = 200

当前时间:2022-09-05 15:42:32.384909, status_code = 200

当前时间:2022-09-05 15:42:32.390318, status_code = 200

aiohttp异步耗时:2.5826876163482666

'''

两次对比可以看到执行过程,时间一个是顺序执行,一个是同时执行。这就是同步和异步的区别。

aiohttp使用介绍

接下来我们会详细介绍aiohttp库的用法和爬取实战。aiohttp 是一个支持异步请求的库,它和 asyncio 配合使用,可以使我们非常方便地实现异步请求操作。asyncio模块,其内部实现了对TCP、UDP、SSL协议的异步操作,但是对于HTTP请求,就需要aiohttp实现了。

aiohttp分为两部分,一部分是Client,一部分是Server。下面来说说aiohttp客户端部分的用法。

基本实例

先写一个简单的案例

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

#!/usr/bin/env python

# -*- coding: utf-8 -*-

# @Author  : 钢铁知识库

import asyncio

import aiohttp

async def get_api(session, url):

    # 声明一个支持异步的上下文管理器

    async with session.get(url) as response:

        return await response.text(), response.status

async def main():

    async with aiohttp.ClientSession() as session:

        html, status = await get_api(session, 'http://httpbin.org/delay/2')

        print(f'html: {html[:50]}')

        print(f'status : {status}')

if __name__ == '__main__':

    #  Python 3.7 及以后,不需要显式声明事件循环,可以使用 asyncio.run(main())来代替最后的启动操作

    asyncio.get_event_loop().run_until_complete(main())

'''

html: {

  "args": {},

  "data": "",

  "files": {},

status : 200

Process finished with exit code 0

'''

aiohttp请求的方法和之前有明显区别,主要包括如下几点:

  • 除了导入aiohttp库,还必须引入asyncio库,因为要实现异步,需要启动协程。
  • 异步的方法定义不同,前面都要统一加async来修饰。
  • with as用于声明上下文管理器,帮我们自动分配和释放资源,加上async代码支持异步。
  • 对于返回协程对象的操作,前面需要加await来修饰。response.text()返回的是协程对象。
  • 最后运行启用循环事件

注意:Python3.7及以后的版本中,可以使用asyncio.run(main())代替最后的启动操作。

URL参数设置

对于URL参数的设置,我们可以借助params设置,传入一个字典即可,实例如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

#!/usr/bin/env python

# -*- coding: utf-8 -*-

# @Author  : 钢铁知识库

import aiohttp

import asyncio

async def main():

    params = {'name': '钢铁知识库', 'age': 23}

    async with aiohttp.ClientSession() as session:

        async with session.get('https://www.httpbin.org/get', params=params) as res:

            print(await res.json())

if __name__ == '__main__':

    asyncio.get_event_loop().run_until_complete(main())

'''

{'args': {'age': '23', 'name': '钢铁知识库'}, 'headers': {'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate', 'Host': 'www.httpbin.org', 'User-Agent': 'Python/3.8 aiohttp/3.8.1', 'X-Amzn-Trace-Id': 'Root=1-63162e34-1acf7bde7a6d801368494c72'}, 'origin': '122.55.11.188', 'url': 'https://www.httpbin.org/get?name=钢铁知识库&age=23'}

'''

可以看到实际请求的URL后面带了后缀,这就是params的内容。

请求类型

除了get请求,aiohttp还支持其它请求类型,如POST、PUT、DELETE等,和requests使用方式类似。

1

2

3

4

5

6

session.post('http://httpbin.org/post', data=b'data')

session.put('http://httpbin.org/put', data=b'data')

session.delete('http://httpbin.org/delete')

session.head('http://httpbin.org/get')

session.options('http://httpbin.org/get')

session.patch('http://httpbin.org/patch', data=b'data')

要使用这些方法,只需要把对应的方法和参数替换一下。用法和get类似就不再举例。

响应的几个方法

对于响应来说,我们可以用如下方法分别获取其中的响应情况。状态码、响应头、响应体、响应体二进制内容、响应体JSON结果,实例如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

#!/usr/bin/env python

# @Author  : 钢铁知识库

import aiohttp

import asyncio

async def main():

    data = {'name': '钢铁知识库', 'age': 23}

    async with aiohttp.ClientSession() as session:

        async with session.post('https://www.httpbin.org/post', data=data) as response:

            print('status:', response.status)  # 状态码

            print('headers:', response.headers)  # 响应头

            print('body:', await response.text())  # 响应体

            print('bytes:', await response.read())  # 响应体二进制内容

            print('json:', await response.json())  # 响应体json数据

if __name__ == '__main__':

    asyncio.get_event_loop().run_until_complete(main())

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

'''

status: 200

headers: <CIMultiDictProxy('Date': 'Tue, 06 Sep 2022 00:18:36 GMT', 'Content-Type': 'application/json', 'Content-Length': '534', 'Connection': 'keep-alive', 'Server': 'gunicorn/19.9.0', 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Credentials': 'true')>

body: {

  "args": {},

  "data": "",

  "files": {},

  "form": {

    "age": "23",

    "name": "\u94a2\u94c1\u77e5\u8bc6\u5e93"

  },

  "headers": {

    "Accept": "*/*",

    "Accept-Encoding": "gzip, deflate",

    "Content-Length": "57",

    "Content-Type": "application/x-www-form-urlencoded",

    "Host": "www.httpbin.org",

    "User-Agent": "Python/3.8 aiohttp/3.8.1",

    "X-Amzn-Trace-Id": "Root=1-631691dc-6aa1b2b85045a1a0481d06e1"

  },

  "json": null,

  "origin": "122.55.11.188",

  "url": "https://www.httpbin.org/post"

}

bytes: b'{\n  "args": {}, \n  "data": "", \n  "files": {}, \n  "form": {\n    "age": "23", \n    "name": "\\u94a2\\u94c1\\u77e5\\u8bc6\\u5e93"\n  }, \n  "headers": {\n    "Accept": "*/*", \n    "Accept-Encoding": "gzip, deflate", \n    "Content-Length": "57", \n    "Content-Type": "application/x-www-form-urlencoded", \n    "Host": "www.httpbin.org", \n    "User-Agent": "Python/3.8 aiohttp/3.8.1", \n    "X-Amzn-Trace-Id": "Root=1-631691dc-6aa1b2b85045a1a0481d06e1"\n  }, \n  "json": null, \n  "origin": "122.5.132.196", \n  "url": "https://www.httpbin.org/post"\n}\n'

json: {'args': {}, 'data': '', 'files': {}, 'form': {'age': '23', 'name': '钢铁知识库'}, 'headers': {'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate', 'Content-Length': '57', 'Content-Type': 'application/x-www-form-urlencoded', 'Host': 'www.httpbin.org', 'User-Agent': 'Python/3.8 aiohttp/3.8.1', 'X-Amzn-Trace-Id': 'Root=1-631691dc-6aa1b2b85045a1a0481d06e1'}, 'json': None, 'origin': '122.55.11.188', 'url': 'https://www.httpbin.org/post'}

'''

可以看到有些字段前面需要加await,因为其返回的是一个协程对象(如async修饰的方法),那么前面就要加await。

超时设置

我们可以借助ClientTimeout对象设置超时,例如要设置1秒的超时时间,可以这么实现:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

#!/usr/bin/env python

# @Author  : 钢铁知识库

import aiohttp

import asyncio

async def main():

    # 设置 1 秒的超时

    timeout = aiohttp.ClientTimeout(total=1)

    data = {'name': '钢铁知识库', 'age': 23}

    async with aiohttp.ClientSession(timeout=timeout) as session:

        async with session.get('https://www.httpbin.org/delay/2', data=data) as response:

            print('status:', response.status)  # 状态码

if __name__ == '__main__':

    asyncio.get_event_loop().run_until_complete(main())

'''

Traceback (most recent call last):

####中间省略####

    raise asyncio.TimeoutError from None

asyncio.exceptions.TimeoutError

'''

这里设置了超时1秒请求延时2秒,发现抛出异常asyncio.TimeoutError,如果正常则响应200。

并发限制

aiohttp可以支持非常高的并发量,但面对高并发网站可能会承受不住,随时有挂掉的危险,这时需要对并发进行一些控制。现在我们借助asyncio 的Semaphore来控制并发量,实例如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

#!/usr/bin/env python

# -*- coding: utf-8 -*-

# @Author  : 钢铁知识库

import asyncio

from datetime import datetime

import aiohttp

# 声明最大并发量

semaphore = asyncio.Semaphore(2)

async def get_api():

    async with semaphore:

        print(f'scrapting...{datetime.now()}')

        async with session.get('https://www.baidu.com') as response:

            await asyncio.sleep(2)

            # print(f'当前时间:{datetime.now()}, {response.status}')

async def main():

    global session

    session = aiohttp.ClientSession()

    tasks = [asyncio.ensure_future(get_api()) for _ in range(1000)]

    await asyncio.gather(*tasks)

    await session.close()

if __name__ == '__main__':

    asyncio.get_event_loop().run_until_complete(main())

'''

scrapting...2022-09-07 08:11:14.190000

scrapting...2022-09-07 08:11:14.292000

scrapting...2022-09-07 08:11:16.482000

scrapting...2022-09-07 08:11:16.504000

scrapting...2022-09-07 08:11:18.520000

scrapting...2022-09-07 08:11:18.521000

'''

在main方法里,我们声明了1000个task,如果没有通过Semaphore进行并发限制,那这1000放到gather方法后会被同时执行,并发量相当大。有了信号量的控制之后,同时运行的task数量就会被控制,这样就能给aiohttp限制速度了。

aiohttp异步爬取实战

接下来我们通过异步方式练手一个小说爬虫,需求如下:

需求页面:百度小说

目录接口:https://dushu.baidu.com/api/pc/getCatalog?data={"book_id":"4308080950"}

详情接口:

https://dushu.baidu.com/api/pc/getChapterContent?data={"book_id":"4295122774","cid":"4295122774|116332"}

关键参数:book_id:小说ID、cid:章节id

采集要求:使用协程方式写入,数据存放进mongo

需求分析:点开需求页面,通过F12抓包可以发现两个接口。一个目录接口,一个详情接口。
首先第一步先请求目录接口拿到cid章节id,然后将cid传递给详情接口拿到小说数据,最后存入mongo即可。

话不多说,直接上代码:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

#!/usr/bin/env python

# -*- coding: utf-8 -*-

# @Author  : 钢铁知识库

# 不合适就是不合适,真正合适的,你不会有半点犹豫。

import asyncio

import json,re

import logging

import aiohttp

import requests

from utils.conn_db import ConnDb

# 日志格式

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s: %(message)s')

# 章节目录api

b_id = '4308080950'

url = 'https://dushu.baidu.com/api/pc/getCatalog?data={"book_id":"'+b_id+'"}'

headers = {

    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "

                  "Chrome/104.0.0.0 Safari/537.36"

}

# 并发声明

semaphore = asyncio.Semaphore(5)

async def download(title,b_id, cid):

    data = {

        "book_id": b_id,

        "cid": f'{b_id}|{cid}',

    }

    data = json.dumps(data)

    detail_url = 'https://dushu.baidu.com/api/pc/getChapterContent?data={}'.format(data)

    async with semaphore:

        async with aiohttp.ClientSession(headers=headers) as session:

            async with session.get(detail_url) as response:

                res = await response.json()

                content = {

                    'title': title,

                    'content': res['data']['novel']['content']

                }

                # print(title)

                await save_data(content)

async def save_data(data):

    if data:

        client = ConnDb().conn_motor_mongo()

        db = client.baidu_novel

        collection = db.novel

        logging.info('saving data %s', data)

        await collection.update_one(

            {'title': data.get('title')},

            {'$set': data},

            upsert=True

        )

async def main():

    res = requests.get(url, headers=headers)

    tasks = []

    for re in res.json()['data']['novel']['items']:     # 拿到某小说目录cid

        title = re['title']

        cid = re['cid']

        tasks.append(download(title, b_id, cid))    # 将请求放到列表里,再通过gather执行并发

    await asyncio.gather(*tasks)

if __name__ == '__main__':

    asyncio.run(main())

至此,我们就使用aiohttp完成了对小说章节的爬取。

要实现异步处理,得先要有挂起操作,当一个任务需要等待 IO 结果的时候,可以挂起当前任务,转而去执行其他任务,这样才能充分利用好资源,要实现异步,需要了解 await 的用法,使用 await 可以将耗时等待的操作挂起,让出控制权。当协程执行的时候遇到 await,时间循环就会将本协程挂起,转而去执行别的协程,直到其他的协程挂起或执行完毕。

await 后面的对象必须是如下格式之一:

  • A native coroutine object returned from a native coroutine function,一个原生 coroutine 对象。
  • A generator-based coroutine object returned from a function decorated with types.coroutine,一个由 types.coroutine 修饰的生成器,这个生成器可以返回 coroutine 对象。
  • An object with an await method returning an iterator,一个包含 await 方法的对象返回的一个迭代器。

总结

以上就是借助协程async和异步aiohttp两个主要模块完成异步爬虫的内容,
aiohttp 以异步方式爬取网站的耗时远小于 requests 同步方式,以上列举的例子希望对你有帮助。

注意,线程和协程是两个概念,后面找机会我们再聊聊进程和线程、线程和协程的关系

300+Python经典编程案例
50G+学习视频教程
100+Python初阶、中阶、高阶电子书籍
1000+简历模板和汇报PPT模板(转正、年终等)

点击拿去

你可能感兴趣的:(python,python,爬虫,开发语言)