负317是几位数在计算机课中,《用计算器探索规律》数学教学反思

第1篇:《用计算器探索规律》数学教学反思

师:我想继续和大家玩一个游戏,愿意吗?这个游戏叫“我的特异功能”。我需要小助手和我配合一下。(学生上台,教师出示下表)

因数因数积积的变化

师:(对一生)这是一张表格,你的任务就是根据老师的要求来填表、回答问题。其他同学帮忙看,注意看、注意听。

师:(背朝学生)小助手,请在表格第一行任写一个乘法算式,如果因数比较大,可以用计算器计算积。小助手,请告诉我,积是多少?

(小助手回答)

师:小助手,第二行的第一个因数不变,第二个因数任意乘一个数,告诉我,第二个因数乘了几?

(小助手回答)

师:同学们,虽然我不知道原来的两个因数是多少,但我知道现在的积是多少,是××。不相信,你们算算看。

师:相信老师有特异功能吗?(不相信)那你们猜猜老师是怎么算出现在的积的?

生:我也能算出来,用上一行的积去乘6。

师:是吗?大家算算看。

(学生计算,表示同意)

师:我想采访一下这位同学,你怎么想到用上一行的积乘这个数的?(指第二个因数乘的数

)生:因为这个算式中一个因数不变,另一个因数乘6,所以积也同时乘6。

师:那如果乘7呢?

生:积也乘7。

师:如果乘99呢?

生:积也乘99。

师:这个同学提出了一个很有意思的想法,他认为一个因数不变,另一个因数乘几,积也乘几(板书)。大家同意他的说法吗?(同意)我可有点半信半疑。这个说法我们可以称之

第2篇:《用计算器探索规律》的教学反思

本课时主要引导学生借助计算器探索积的一些变化规律和商不变的规律,以及运用这些规律进行简便计算和解决一些简单的实际问题。在学习这部分内容之前,学生已经学习了整数乘、除法和使用计算器进行计算,有了一定的学习基础。因此,重点应放在对规律的探索方面,教学完本单元内容,我有以下几点体会:

1、教学时要留足够的时间,让学生发现探索规律,并且有*思考的时间。上课时有些思维敏捷的孩子会一下子发现规律,并脱口而出,于是,我就让这个学生来说说是怎么想的,给还处于懵懂的孩子一些提示,小结规律后,再通过学生自己写算式来验*发现的规律,这样就加深学生对规律的认识。当然,对那些“聪明”孩子的上课习惯还是要加强培养。

2、将课堂延伸到课外,在上课前,先让学生在家里算一算例题,找找规律,这样可以让学生带着问题上课,提高课堂效率,也给学生留出了充足的时间发现规律。

3、克服思维惰性,加强估算能力的培养。发现和总结出规律后,就可以进行简便计算,一些较难的两位数乘两位数可以很快得出*,但有些孩子为了避免犯错,会回避用规律来进行计算,而是采用比较繁琐的列竖式。出现这种情况可能有两种原因,一种是课堂上对规律的感知还不够,要适当的给这部分孩子增加练习量,进一步感受规律,提高规律掌握的熟练度。另一种是,怕粗心犯错,对于这部分孩子

第3篇:《用计算器探索规律》教学反思

在教学《用计算器探索规律》一课时,学生的积极性极高,可能是他们可以乘机玩一玩他们认为非常神奇有趣的计算器吧!虽然这一现象使课堂看着充满*,但在这*的背后却让我陷入了几点思考之中。

1、计算器要“利用”到何种程度为宜。我们借助计算器,将学生的思维从繁杂的计算中解脱出来,使学生更加关注规律的发现过程。在猜想、枚举验*、应用规律的过程中,学生必然要经历大量的计算,其中也包括一些大数目的计算。为了使学生摆脱这些繁杂的计算,让学生的思维集中于探索和发现规律上,教材也明确要求学生使用计算器来进行这些计算。这样就可以让学生更好地体验探索数学规律的过程与方法,并使教学过程更多地侧重于发展学生的数学思考。这是计算器的作用所在。但同学我们也要清醒地认识到,计算器是用来帮助学生能较快较准地计算出大数目计算题的结果,在此基础上发现各种规律。所以我认为计算器只是本节课的一种辅助工具,而非本课所学规律的重点。我们不要把计算器神奇化,使得学生过分相信、依赖于计算器计算,这样只有害处且无益于学生数学思维的发展,数感的培养。

2、本课内容似乎略显单薄,时间尚余。本课是教学一个因数不变,另一个因数乘几,积也相应地发生变化的规律。但是通过实践教学,我发现这个内容在一节课内进行教学和相应的应用练习,时间还有多余,学生也似

第4篇:五年级数学上《用计算器探索规律》的教学反思范文

一、有效教学

苏霍姆林斯基说过:“如果教师不想方设法使学生达到情绪高昂和智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度。而不动情的脑力劳动就会带来疲倦,没有欢欣鼓舞的心情,学习就会成为学生沉重的负担。”在探索规律这一环节中,我设计的探索题,激发了强烈的探索兴趣和能力。学生不自觉地就进入了新规律套所的状态中,发现新的规律也成为学生的主题需要,学生由被动地接受者、参与者成为主动地创造者、主体者,而我的角*更符合顾问,适当的时机引领寻声的探索走向深入、持久、有效。

二、高效教学

适时引入计算器。在探索规律时,有的计算过程比较复杂,这时引入计算器省时又精确,使学生通过亲身体验,感受到计算器的作用和优势,同时培养了学生灵活选择计算方法和工具的意识。

整节课自始自终,把学习的主动权完全交给学生。通过让学生试算、观察、比较、讨论等充分调动学生多种感官的参与,让学生全面参与新规律的发现过程。而多种感官参加学习活动,可使学习内容在大脑建立多层次、多网络联系,利于学生理解记忆,也能凸显学生的主体地位,使教学学习变成学生主体性、能动性、*性不断发展和提升的过程,体现了以学生发展为本的新理念。

三、魅力教学

要使学生感悟小学数学中蕴涵的丰富美,有效的方法是让学生亲身体验数学的发生、发展过程,

第5篇:用计算器探究规律的教学反思

借助计算器探究规律的目的是什么?仅仅是为了训练学生对键盘的熟悉程度吗?抑或是掌握计算的准确度?这节课应该怎样上?两节课的计算器教学已经结束,我却陷入了沉思。

上节课学生用计算器算出的22222222×55555555的结果五花八门,我曾经提示:“你看,这么多的2和这么多的5相乘,能不能想个巧妙的办法,从简单的算式入手,尝试解决呢?”没想到,还真有几个孩子说出先从2×5=10开始,看能否找到积的排列规律!!

于是,有趣的算式出现了——

2×5=10

22×55=1210

222×555=123210

2222×5555=12343210……

“我好像发现规律了!”我听到几个孩子小声嘟囔着。

”积当中最大的数字就是两个因数的位数,然后再从大到小排列到0就行。“赵洪涛说出了自己的想法,虽然不是特别准确,但是规律基本上是正确的。在此基础上,我又引导学生进行了总结:从1开始,因数是几位数就写到几,倒过来再写到1,最后加一个0。

”看来,计算器虽然有时候不能计算出像22222222×55555555的结果,但是我们可以运用计算的结果,找到积与积之间的排列规律,根据规律就可以写出结果了。当然,这个规律的探索还需要同学们掌握数与数之间的关系。我们再来试一试,好吗?“

…………

一节课下来,孩子们”玩“得挺高兴,但是学生

第6篇:用计算器探索规律教案

教学内容:

用计算器探索规律p29

教学目标:

1、能借助计算器探求简单的数学规律。

2、培养学生观察、归纳、概括、推理的数学能力。

3、让学生感受到信息化时代,计算器(或计算机)是探索数学知识的有力工具。

教学过程:

一、激发学生兴趣

1、使用计算器,小组合作

任意给出四个互不相同的数字,组成最大数和最小数,并用最大数减最小数,对所得结果的四个数字重复上述过程,你会发现什么呢?

2、小组汇报,展示过程,讨论发现。

3、采访学生,有什么感受。

师:仿佛掉进了数学黑洞,永远出不来,非常的神奇,今天,我们还将利用计算器去探索更多的有趣的神奇的数学规律,有兴趣吗?let’sgo!

二、自主探索

1、出示例10**作,你发现了什么规律?

①商是循环小数②下一题结果是上一题的2倍…

不计算,用发现的规律直接写出后几题的商。

2、用计算器验*。

小结:一旦发现规律,就可以运用规律解决问题。

3、*完成“做一做”,你发现什么规律?先小组交流,再全班交流校对。

三、请学生总结,也可质疑。

教师激励:肯定学生去探索规律后的秘密的探索精神,鼓励他们继续努力;希望学生在生活中,学习研究中去发现探索更多的规律。

四、*练习p317—

第7篇:《探索规律》的教学反思

一年级数学第一册安排了两次“探索规律”,我将两次的内容进行了整合,设计了探索实物、图形和数的排列规律。这节课从始至终都充满浓浓的探究味,在入学第一学期就为培养学生探究能力的发展奠定了坚实的基础。

一、在探究中体验“规律”的存在和优势

上课开始,我创设了一个让学生在短时间记数的情境。出了三组数,一组是没有规律的数。有两组是有规律的数,分别是1234512345和22112211;学生在短短的几秒内就记住了这些数。我究其记得快的原因,学生说因为这两组数有规律,所以记得快。这个活动的设计,目的是让学生在探究中体验“规律”的存在和优势所在,进而明确这节课探究的目标是探索规律。

二、让学生经历从具体到抽象的探究过程

本节课学生经历了从具体到抽象的探究过程:从找实物的排列规律,到找图形的排列规律,再到找10以内数的排列规律。找实物的排列规律是从学生熟悉的水果朋友和动物朋友入手,让学生发现规律并且应用规律解决简单的问题。到图形排列规律时,放手让学生用4个圆片和4个三角形自己创造规律。接下来转入数的排列规律。因为学生只学习了10以内的数,所以我把探索数的规律定位在发现单数、双数的排列规律上,让学生发现单、双数的排列规律都是一个比一个多2。最后,回归到生活中的规律。这种从具体到抽象的设计,既符合学生的认知水

第8篇:六年级数学下册《探索规律总复习》教学反思

“探索规律”这一教学内容是锻炼学生思维能力的一个好素材,它能培养学生观察、猜想、归纳的思想方法,教材主要呈现了探索数列的规律,图形的规律,实际生活中蕴涵的规律等几个复习内容。鉴于学生已经有了一定的经验,我对本节课进行了深入的挖掘和整理,主要分了以下几个环节来完成。

一、探索活动,发现规律。

“乘法表”是数学体现数字规律的篇章,通过先填再找乘法表中的规律,充分调动学生的视觉去观察,大脑去思考、归纳,让学生经历提出问题——探究猜测——推理验*——得出结论这一过程。给学生创设了宽松的*思考空间,让学生自主发现各种规律,充分尊重学生的个性思维;给学生提供交流的机会,让学生在交流过程中分享彼此的思维成果,相互启发,共同发展。开始几个学生发现的规律还仅仅只停留在横着看竖着看的基础上,当有学生发现斜着看的排列规律后,其他的学生深受启发,马上顿悟,把学习过正反比例的知识也应用在其中。在这一过程中可使学生在探索中提高自己的思维能力。

二、探索规律在生活中的应用。

学生的数学学习内容应该是现实的、有意义的、富有挑战性的。因此,教师要为学生提供现实生活的数学,而这个现实不是*眼中的现实,应该是学生眼中的现实,贴近他们现实生活的内容进行教学,才能唤起他们的学习兴趣,主动应用数学去思考问题、解决问题。使学生们体

第9篇:四年级数学《探索与发现商不变的规律》教学反思

这节课最重要的我认为是引导学生经历探索发现“商不变规律”的过程,因此我非常重视和期待生成的过程。在观察4个算式的被除数和除数的变化时,我预设了3个阶段----1、末尾0多少的变化;2同时扩大或缩小相同的倍数;同时乘或除以相同的数(0除外)。在这个过程中,让学生充分的通过全班交流、小组合作、同桌探讨等方式,运用观察、比较、分析、概括归纳和验*的学法,积极主动地探索规律,符合学生的认知规律,使学生在这个过程中不但发现、理解和掌握了商不变的规律,最重要的经历了整个探究过程,为学生以后的发展,尤其是自主学习的能力的培养起到一定的促进作用。实际的效果也比较明显,这是我本节课最大的收获。

因此,在以后的教学中,我还要根据学生情况和教学内容,注重学习过程,相信经过长年累月的训练,学生会掌握必备的学习方法,取得长足的进步,正所谓:积硅步,至千里

第10篇:探索规律的教学设计

篇一:探索规律教学设计

课题:探索规律。(西师版小学数学第十册)

教学目标:

1、通过观察、猜测等活动,发现图形和数的简单排列规律。

2、经历探索规律的过程,培养观察能力、推理能力、创新意识。

3、在探索规律的过程中,体会数学与生活的练习,获得成功的体验。教学重点:结合图形,探索数与数之间的规律。

教学难点:发现数学规律。

教学过程:一、情境

1、先找规律,再在括号里填上合适的数。

123)、()........234

130.4、0.8、()、(.....)..(2)、、55(1)、、(

2、导入。

二、活动

1、看图找规律。

○1、*思考。

○2、小组内交流。

○3、全班交流。

○4、试一试:1?1?1?11

24816?32?1

64?

2、你能用发现的规律计算吗?111111

3?6?12?244?1

8?1

16?32

三、导学

1、你发现了怎样的规律?

2、你能举出相类似的例子吗?

四、运用

1、试一试。

11111

2?4?8?16?32?1

64

11111

4?8?16?32?64

1

5?1

10?111

20?40?80

2、找规律,用分数表示*影部分的面积。

五、评价

本节课你有什么收获?

作业:练习二十第1、2、3题。

篇二:探索规律教学设计

探索规律教学设计

教学目标:

1、使学生结合具体情境,探索并发现简单周期现象中的排列规律,能根据确定

你可能感兴趣的:(负317是几位数在计算机课中)