Airflow官网地址: https://airflow.apache.org/docs/apache-airflow/stable/start/index.html.
Airflow | Python |
---|---|
2.3.0及以上 | 3.8.10 |
2.0.2 ~ 2.2.5 | 3.6.12 |
2022-06-21安装2.3.0以上版本一直报警,无法解决,降低版本
- **下载python 3.7.8 ,下面的都改成3.6.12,某些地方略微修改 **
wget https://www.python.org/ftp/python/3.6.12/Python-3.6.12.tgz- 解压
tar -zxvf Python-3.6.12.tgz
- 安装依赖
sudo yum -y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel libffi-devel- 安装
cd Python-3.6.12
./configure -prefix=/usr/local/python3
看到很多config后面加参数的,那都是高版本才有的,低版本都没有参数
Python config: https://docs.python.org/zh-cn/dev/using/configure.html.
- 编译
make && make install- 添加软链
最好先删除软链,请看下面。然后再创建
sudo ln -s /usr/local/python3/bin/python3.6 /usr/bin/python3
sudo ln -s /usr/local/python3/bin/pip3.6 /usr/bin/pip3- 检验
python3 -V
pip3 -V- 升级
pip3 install --upgrade pip- 退出python命令
输入exit(),回车
输入quit(),回车
CentOS安装mysql真的太难了,花了我一天的时间
Mysql Install: https://blog.csdn.net/weixin_43916074/article/details/125284109.
Running Airflow locally: https://airflow.apache.org/docs/apache-airflow/2.2.3/start/local.html.
Airflow needs a home.
~/airflow
is the default, but you can put it
export AIRFLOW_HOME=~/airflowInstall Airflow using the constraints file
AIRFLOW_VERSION=2.3.2
PYTHON_VERSION=“$(python --version | cut -d " " -f 2 | cut -d “.” -f 1-2)”For example: 3.7
CONSTRAINT_URL=“https://raw.githubusercontent.com/apache/airflow/constraints-${AIRFLOW_VERSION}/constraints-${PYTHON_VERSION}.txt”For example: https://raw.githubusercontent.com/apache/airflow/constraints-2.3.2/constraints-3.7.txt
pip install “apache-airflow==${AIRFLOW_VERSION}” --constraint “${CONSTRAINT_URL}”The Standalone command will initialise the database, make a user,and start all components for you.
airflow standalone
- Airflow needs a home.
~/airflow
is the default, but you can put it
export AIRFLOW_HOME=~/airflow
- pip3 install “apache-airflow[celery]==2.2.5” --constraint “https://raw.githubusercontent.com/apache/airflow/constraints-2.2.5/constraints-3.6.txt”
- 当我的环境python = 3.6.12
sudo pip3 install apache-airflow
=>自动选择2.2.5版本
这下面使用airflow都要./airlfow,要建软链,我配置变数都不行。
- 配置环境变量
sudo vim /etc/profile
content : export AIRFLOW_HOME=~/airflow- 执行配置
source /etc/profile- 检查版本
airflow version- 会报警,说升级更新sqlit
- 配置环境变量
sudo vim ~/.bashrc
content : export AIRFLOW_HOME=~/airflow- 执行配置
source ~/.bashrc- 检查版本
airflow version
- 进入mysql
mysql -u root -p- 建数据库
mysql> create database if not exists airflow default character set utf8 default collate utf8_general_ci;- 建用户
mysql> create user ‘airflow’@‘%’ identified by ‘Airflow@123’;- 授权1
mysql> grant all privileges on airflow.* to airflow@localhost identified by ‘Airflow@123’;
- 授权2
mysql> grant all privileges on airflow.* to ‘airflow’@‘%’ identified by ‘Airflow@123’;
- 授权3
mysql> flush privileges;
- 修改配置~/airflow/airflow.cfg,一般都在当前用户下面
#sql_alchemy_conn = sqlite:data/airflow/airflow.db
sql_alchemy_conn = mysql://airflow:Airflow@123@localhost:3306/airflow- 执行
airflow version- 继续安装插件
sudo yum install -y mysql-devel
pip3 install pymysql
pip3 install mysql- 初始化
airflow db init
- Global variable explicit_defaults_for_timestamp needs to be on (1) for mysql
mysql -u root -p
mysql > show databases;
mysql > use airflow;
mysql > show global variables like ‘%timestamp%’;
mysql > set global explicit_defaults_for_timestamp =1;
mysql > exit- 再次初始化
airflow db init
- 启动服务
airflow users create -u admin -p admin -f admin -l admin -r Admin -e xxxxx
airflow webserver --port 8080
airflow scheduler- 访问
http://ip:8080/
- 安装redis
yum -y install redis
- 修改redis配置
sudo vim /etc/redis.conf
#bind 127.0.0.1
// 注释掉,使redis允许远程访问
requirepass redis
// 修改这行,redis设置登录密码(自定义,目前是redis)- 关闭密码验证
protected-mode no
- 启动redis
sudo systemctl start redis
- 检查redis服务
ps -ef | grep redis
- 测试redis服务
cd /usr/bin
redis-cli
类似于进入mysql
redis install with ssl: https://blog.csdn.net/weixin_43916074/article/details/126470126.
- python下载redis库
sudo pip3 install redis
- python下载celery库
sudo pip3 install celery
- 修改配置 airflow.cfg
executor = CeleryExecutor
broker_url = redis://127.0.0.1:6379/0
result_backend = redis://127.0.0.1:6379/0
orresult_backend = db+musql://username:password@localhsot:3306/airflow
- 搜索,总能找到一些蛛丝马迹
sudo find / -name ‘redis*’
修改master的配置,不要用localhost
[core]
dags_folder = /root/airflow/dags
#修改时区
default_timezone = Asia/Shanghai
#配置Executor类型,集群建议配置CeleryExecutor
executor = CeleryExecutor
# 配置数据库
sql_alchemy_conn=mysql://airflow:Airflow@123@xxipxx:3306/airflow
[webserver]
#设置时区
default_ui_timezone = Asia/Shanghai
[celery]
#配置Celery broker使用的消息队列
broker_url = redis://xxipxx:6379/0
#配置Celery broker任务完成后状态更新使用库
result_backend = db+mysql://airflow:Airflow@123@xxipxx:3306/airflow
将master的airflow.cfg覆盖掉其他节点的airflow.cfg
其实就是所有人都共用一个mysql和redis
在master启动webserver,scheduler,在其他node启动wroker
- master command
cd /usr/local/python3/bin
./airflow webserver --port 8081
./airflow scheduler
- other node command
./airflow celery worker
- 前面都是测试,正式环境都要守护进程启动
./airflow webserver -D
./airflow scheduler -D
./airflow celery worker -D
- close service
ps -ef | grep airflow
kill -9 xxxx
- 确认安装openssl
openssl version- 生成key,替换成自己的域名或IP地址
openssl req -x509
-sha256 -days 356
-nodes
-newkey rsa:2048
-subj “/CN=xxxxx/C=US/L=San Fransisco”
-keyout domain.key -out domain.crt
- 按照官网去配就好了
ssl config: https://airflow.apache.org/docs/apache-airflow/2.2.5/security/webserver.html#ssl.
- 客制化dags,只需要参考tutorial code就ok啦,如何将其他删掉
with DAG(
dag_id='hello_world',
# [START default_args]
# These args will get passed on to each operator
# You can override them on a per-task basis during operator initialization
default_args={
'owner': 'Nan',
'depends_on_past': False,
'email': ['[email protected]'],
'email_on_failure': True,
'email_on_retry': True,
'retries': 1,
'retry_delay': timedelta(minutes=5),
# 'queue': 'bash_queue',
# 'pool': 'backfill',
# 'priority_weight': 10,
# 'end_date': datetime(2016, 1, 1),
# 'wait_for_downstream': False,
# 'sla': timedelta(hours=2),
# 'execution_timeout': timedelta(seconds=300),
'on_failure_callback': failure_callback, //打开这两个
'on_success_callback': success_callback, //打开这两个回调函数
# 'on_retry_callback': another_function,
# 'sla_miss_callback': yet_another_function,
# 'trigger_rule': 'all_success'
},
# [END default_args]
description='A simple tutorial DAG',
schedule_interval=timedelta(days=1),
start_date=datetime(2021, 1, 1),
tags=['example'],
) as dag:
# [START documentation]
dag.doc_md = """
This is a documentation placed anywhere
""" # otherwise, type it like this
download_task= PythonOperator(
task_id = "hello_world",
python_callable = demo //呼叫自定义demo function
)
# [END tutorial]
// 获取airflow.cfg里面的配置参数
def send_email(mail_msg):
"""SMTP Service"""
mail_host = conf.get("smtp","smtp_host")
mail_user = conf.get("smtp","smtp_user")
mail_pass = conf.get("smtp","smtp_password")
sender = conf.get("smtp","smtp_mail_from")
port = conf.get("smtp","smtp_port")
receivers = ['xxxxx.com']
message = MIMEText(mail_msg, 'html', 'utf-8')
message['From'] = sender
message['To'] = ";".join(receivers)
subject = 'Airflow Msg'
message['Subject'] = Header(subject, 'utf-8')
try:
smtp_obj = smtplib.SMTP(mail_host)
smtp_obj.connect(mail_host,port)
smtp_obj.starttls()
smtp_obj.login(mail_user, mail_pass)
smtp_obj.sendmail(sender, receivers, message.as_string())
except smtplib.SMTPException as error:
print("Error: send failure ,"+ error)
def send_email_fun(msg):
send_email(msg)
// An highlighted block
def send_email_fun(msg):
send_email(msg)
def success_callback(context: dict):
dag_id = context['dag'].dag_id
email = context['dag'].default_args['email']
schedule_interval = context['dag'].schedule_interval
task_id = context['task_instance'].task_id
run_id = context['run_id']
operator = context['task_instance'].operator
state = context['task_instance'].state
duration = '%.1f' % context['task_instance'].duration
max_tries = context['task_instance'].max_tries
hostname = context['task_instance'].hostname
start_date = context['task_instance'].start_date.strftime('%Y-%m-%d %H:%M:%S')
end_date = context['task_instance'].end_date.strftime('%Y-%m-%d %H:%M:%S')
params = context['params']
var = context['var']
test_mode = context['test_mode']
execution_date = context['logical_date'].strftime('%Y-%m-%d %H:%M:%S')
next_execution_date = context['data_interval_end'].strftime('%Y-%m-%d %H:%M:%S')
msg = f"""<h3 style='color: green;'>Airflow DAG: {task_id}</h3><tr>
<table width='1500px' border='1' cellpadding='2' style='border-collapse: collapse'>
<tr><td width='30%' align='center'>DAG Name</td><td>{dag_id}</td></tr>
<tr><td width='30%' align='center'>Task name</td><td>{task_id}</td></tr>
<tr><td width='30%' align='center'>Run Cycle</td><td>{schedule_interval}</td></tr>
<tr><td width='30%' align='center'>Run ID</td><td>{run_id}</td></tr>
<tr><td width='30%' align='center'>Task type</td><td>{operator}</td></tr>
<tr><td width='30%' align='center'>Stask Status</td><td style='color: green;'>Succeed</td></tr></table>
"""
print('succeed')
send_email_fun(msg)
print("this is succeed")
def failure_callback(context: dict):
dag_id = context['dag'].dag_id
email = context['dag'].default_args['email']
schedule_interval = context['dag'].schedule_interval
task_id = context['task_instance'].task_id
run_id = context['run_id']
operator = context['task_instance'].operator
state = context['task_instance'].state
duration = '%.1f' % context['task_instance'].duration
max_tries = context['task_instance'].max_tries
hostname = context['task_instance'].hostname
start_date = context['task_instance'].start_date.strftime('%Y-%m-%d %H:%M:%S')
end_date = context['task_instance'].end_date.strftime('%Y-%m-%d %H:%M:%S')
params = context['params']
var = context['var']
test_mode = context['test_mode']
exception = context['exception']
execution_date = context['logical_date'].strftime('%Y-%m-%d %H:%M:%S')
next_execution_date = context['data_interval_end'].strftime('%Y-%m-%d %H:%M:%S')
msg = f"""<h3 style='color: green;'>Airflow DAG : {task_id} Error</h3>
<table width='100%' border='1' cellpadding='2' style='border-collapse: collapse'>
<tr><td width='30%' align='center'>DAG Name</td><td>{dag_id}</td></tr>
<tr><td width='30%' align='center'>Task Name</td><td>{task_id}</td></tr>
<tr><td width='30%' align='center'>Run Cycle</td><td>{schedule_interval}</td></tr>
<tr><td width='30%' align='center'>Task ID</td><td>{run_id}</td></tr>
<tr><td width='30%' align='center'>Task Type</td><td>{operator}</td></tr>
<tr><td width='150px' style='color: red;'>Task Status</td><td style='color: red;'>{state}</td></tr>
<tr><td width='30%' align='center'>Retry</td><td>{max_tries}</td></tr>
<tr><td width='30%' align='center'>Time</td><td>{duration}s</td></tr>
<tr><td width='30%' align='center'>Hostname</td><td>{hostname}</td></tr>
<tr><td width='30%' align='center'>exe_date</td><td>{execution_date}</td></tr>
<tr><td width='30%' align='center'>stasrt_date</td><td>{start_date}</td></tr>
<tr><td width='30%' align='center'>end_date</td><td>{end_date}</td></tr>
<tr><td width='30%' align='center'>previoue_exe_date</td><td>{prev_execution_date}</td></tr>
<tr><td width='30%' align='center'>next_exe_date</td><td>{next_execution_date}</td></tr>
<tr><td width='30%' align='center'>Parmameters</td><td>{params}</td></tr>
<tr><td width='30%' align='center'>Variable</td><td>{var}</td></tr>
<tr><td width='30%' align='center'>Mode</td><td>{test_mode}</td></tr>
<tr><td width='30%' align='cneter'>Task Status</td><td style='color: red;'>{state}</td></tr>
<tr><td width='150px' style='color: red;'>Error Msg</td><td style='color: red;'>{exception}</td></tr></table>
"""
send_email_fun(msg)
print("this is failure")
airflow.cfg
[core]
dags_folder = /airlfow_home/dags #客制化的dag目录,用python执行后,自动写入UI界面
default_timezone = Asia/Shanghai #设置默认的时区
executor #有以下几个选择,生产一般使用CeleryExecutor
SequentialExecutor #按顺序调度,这个一般适用于开发、测试,因为按顺序调度,真的是太慢了。
LocalExecutor #local模式,就无法使用集群扩展了。
CeleryExecutor #分布式调度
DaskExecutor #没用过
KubernetesExecutor #kubernetes方式提交任务,也适用于生产,一般是那些单个任务比较大的情况。
#airflow的元数据库连接串,可以是sqlite、mysql、postgresql,推荐mysql和postgresql:
sql_alchemy_conn = mysql://username:password@localhost:3306/airflow?charset=utf8
parallelism #所有worker同时运行的task数;
dag_concurrency #单个dag中同时运行的task数;
max_active_runs_per_dag #单个dag最多同时运行的dag_run数;
load_examples #是否加载airflow自带的example dag;
fernet_key #connection和variable加密用的key,记住,如果你要升级airflow,升级后需要把此参数值copy到新的配置文件中,不然升级后,airflow中的connection和variable加密的值会解密失败,无法查看;
dagbag_import_timeout #scheduler加载新的dag使用的超时时间;
dag_file_processor_timeout #scheduler解析dag使用的超时时间;
store_serialized_dags #是否序列化dag,开启时,scheduler会定时将dag序列化到数据库中存储起来,这样我们的webserver就直接可以查数据库了,更方便快捷高效;
min_serialized_dag_update_interval #序列化dag的最小间隔时间,也就是说,scheduler序列化所有dag后,隔多长时间再序列化。
store_dag_code #是否存储dag代码到数据库;
[webserver]
base_url #webserver启动的访问url
web_server_host #webserver的host
web_server_port #webserver的访问端口
web_server_ssl_cert #开启https,使用openssl生成的cert
web_server_ssl_key #开启https,使用openssl生成的key
web_server_master_timeout #webserver其实启动的是gunicorn服务,那么webserver master gunicorn服务超过这个时间没有响应,就会抛出异常;
web_server_worker_timeout #webserver worker服务同理
workers #webserver启动的gunicorn服务个数,个数越多,webserver更快,当然根据系统资源来设置
expose_config #是否可以在web上查看airflow.cfg;
authenticate #webserver认证方式,我们可以设置以下几个登录认证方式,这几个方式仅限登录认证:
- github_enterprise_auth
- google_auth
- kerberos_auth
- ldap_auth
- password_auth
#当然我们后面还有一个rbac认证模式,这是生产用的最多的方式,因为它包含了web界面上每一个点击按钮的权限
filter_by_owner #当我们使用了以上认证方式时,如果filter_by_owner设置为true,那么登录后,界面上显示的dag设置的owner就是跟登录用户一致的。做到了dag的用户隔离;
dag_default_view #在我们从web界面进入某个dag时,默认展示的页面,可以设置tree, graph, duration, gantt, landing_times
hide_paused_dags_by_default #是否隐藏关闭的dag;
page_size #web页面主页默认展示的dag个数,设置越少,打开主页速度越快哦;
rbac #权限认证模式,开启时,可以做到web界面的权限控制,细粒度到每个dag的每个task的每个操作;
default_dag_run_display_number #打开dag的tree界面时,默认显示多少个运行批次:越少越好,打开的速度也就越快;
[sentry]
sentry_dsn #sentry是一个监控系统,可以监控到airflow服务的运行情况
[celery]
worker_concurrency #单个worker的并发执行task数
broker_url #broker支持rabbitmq/redis/mysql/postgresql, task执行命令的中转站,scheduler发送执行命令到中转站,然后worker去消费这些task命令,并执行
result_backend #worker执行完task,将结果存储的位置,官方推荐使用落地的持久化数据库,如mysql、postgresql等
flower_host #flower是airflow中监控broker和worker的一个服务,有自己的单独页面,可以看到broker情况、task执行情况
flower_port #flower访问的端口
[scheduler] #airflow最重要的角色:调度器,它承担着初始化dag文件、动态编译dag文件、发现调度任务并发送执行命令的责任。我们调度的快慢,也需要从这里设置一些参数,下面来看看。
- job_heartbeat_sec #任务的心跳监控时间,每隔job_heartbeat_sec秒去监控一下任务的状态
- scheduler_heartbeat_sec #监控scheduler的状态,每隔scheduler_heartbeat_sec秒去监控scheduler状态
- run_duration #scheduler运行多长时间停止,-1表示不停止,持续调度
- num_runs #每隔dag的调度次数,-1表示无限次
- processor_poll_interval #解析每个dag之间的间隔时间
- min_file_process_interval #间隔多长时间一个新的dag被拾起;
- dag_dir_list_interval #间隔多长时间,scheduler从磁盘读取出dag列表。跟上一个参数min_file_process_interval的区别就是,此参数不解析dag,只获取dag列表。先获取dag列表,在解析dag文件;
- parsing_processes #编译dag所使用的schedule进程数,这个非常关键,影响到dag的调度速度和task的调度速度,官方推荐cpu盒数-1,但是我们可以设置到2倍的cpu盒数,榨干cpu。