- 如何生成IP地址的自签名证书
Ceramist
SSL证书
生成一个用于特定IP地址的自签名证书是一个相对直接的过程。自签名证书通常用于开发测试环境,而不是生产环境,因为它们不是由受信任的证书颁发机构(CA)签署的。下面是在命令行工具如OpenSSL中创建自签名证书的基本步骤:前提条件确保你的计算机上已经安装了OpenSSL。大多数Linux发行版默认包含了OpenSSL,而在Windows上可能需要手动安装。步骤打开命令提示符或终端:在Windows上使
- Linux下比ack更快的ag搜索命令详解
linux
简介ag命令(TheSilverSearcher)是一款用C编写的快速且对开发人员友好的文本搜索工具,针对源代码搜索进行了优化。它与ack类似,但速度更快,因此深受开发人员喜爱,可用于搜索代码库。它最初是ack的克隆版,但此后其功能集略有不同。在典型使用中,ag比ack快5-10倍,使用Pthreads来利用多个CPU核心并行搜索文件。默认情况下,ag将忽略文件名匹配.gitignore、.hgi
- 人工智能学习路线全链路解析
power-辰南
大模型算法实战工程人工智能学习机器学习
一、基础准备阶段(预计2-3个月)(一)数学知识巩固与深化线性代数(约1个月):矩阵基础:回顾矩阵的定义、表示方法、矩阵的基本运算(加法、减法、乘法),理解矩阵乘法不满足交换律等特性,通过练习题加深对运算规则的掌握,例如计算简单的矩阵乘法式子、求矩阵的转置等。向量空间与线性变换:学习向量空间的概念,包括向量的线性组合、线性相关与线性无关,掌握线性变换的定义、几何意义以及如何用矩阵表示线性变换,借助
- 透过生活小故事,轻松理解大模型开发的五种核心方法
java
大家好,我是大圣,今天聊一下大模型开发的几种方法。大模型开发常用方法前言人工智能的世界听起来复杂神秘,但其实它与我们的日常生活有着许多相似之处。即使你对大模型开发一无所知,也能通过生活中的简单故事,理解其中的奥秘。本文将以贴近生活的五个场景,通俗易懂地讲解大模型开发中的五种核心方法:提示词工程和外部函数、Agent设计、RAG设计(检索增强生成)、微调以及预训练。让我们一同走进这些故事,揭开大模型
- sed学习笔记1
我要精通C++
shell脚本与linux命令sed
0.引用《Linux命令行与shell脚本编程大全.第3版by布鲁姆,布雷斯纳汉》第19章,第21章1.今晚回家学习总结
- AI绘画工具介绍
编程小郭
ai作画
市面上AI绘画工具众多,它们利用深度学习和图像处理技术,为用户提供了丰富的创作体验和可能性。以下是对几款主流AI绘画工具的详细介绍及横向对比:一、主流AI绘画工具介绍Midjourney简介:Midjourney是一个独立的研究实验室,专注于人工智能绘图,被广泛应用于设计、艺术创作、广告制作等领域。特点:以其强大的图像生成能力和跨界融合的创新特点著称,能够根据文本描述和视觉输入生成兼具故事性与视觉
- 文心一言vsGPT-4全面对比
编程小郭
文心一言chatgptjavapython人工智能ai
文心一言和GPT-4都是当前非常先进的人工智能语言模型,它们各自具有独特的特点和优势。以下是对这两款工具的全面比较:文心一言是由百度开发的一款大型人工智能语言模型,它基于强大的深度学习技术和海量的数据资源,具备出色的语言理解和生成能力。文心一言在中文处理方面尤为出色,能够准确理解中文语境和语义,生成流畅、自然的中文文本。文心一言还具备丰富的知识库和推理能力,能够回答各种问题,提供有用的信息和建议。
- Linux 怎么在储存设备上创建文件系统?
linux
简介Linux中的mkfs命令用于在存储设备(例如分区、逻辑卷或整个磁盘)上创建文件系统。它代表makefilesystem(创建文件系统),是磁盘格式化的基本命令。语法mkfs[options]:目标设备,例如:/dev/sda1,/dev/sdb,/dev/loop0[options]:定制文件系统的选项支持的文件系统ext2/3/4:第二、第三和第四个扩展文件系统(mkfs.ext2、mkf
- 最近,大模型岗位爆了。。。
IT猫仔
人工智能学习ai
重磅消息,国资委打响了国内AI第一枪!宣布央企将把发展AI放在全局统筹地位上,并加快建设一批智能算力中心。这意味着传统行业又迎来了一次大洗牌,这个过程需要大量AI人才!!现在国内头部人工智能公司已经开始用AI数字人助力各行各业,央企+交互数字人将成今年一整年的趋势。除此之外,知名大厂也都在布局AI市场。懂AI的程序员年薪已经翻到80w-96w!风口之下,与其焦虑被行业淘汰,不如先人一步掌握AI大模
- Kimi终于开源了,联手清华开源大模型推理架构Mooncake
吴脑的键客
人工智能架构人工智能
在人工智能迅速发展的时代,大型模型的智能化水平不断提升,但随之而来的推理系统效率挑战也越来越明显。如何应对高推理负载、降低推理成本、缩短响应时间,已成为业界共同面对的重要问题。Kimi公司联合清华大学的MADSys实验室,推出了基于KVCache的Mooncake推理系统设计方案,该方案于2024年6月正式发布。Mooncake推理系统通过创新的PD分离架构和以存换算为中心的理念,显著提升了推理的
- 网络爬虫——分布式爬虫架构
好看资源分享
网络爬虫Python爬虫分布式架构
分布式爬虫在现代大数据采集中是不可或缺的一部分。随着互联网信息量的爆炸性增长,单机爬虫在性能、效率和稳定性上都面临巨大的挑战。分布式爬虫通过任务分发、多节点协作以及结果整合,成为解决大规模数据抓取任务的核心手段。本节将从Scrapy框架的基本使用、Scrapy-Redis的分布式实现、分布式爬虫的优化策略等多个方面展开,结合实际案例,帮助开发者掌握分布式爬虫的设计与实现。1.Scrapy框架的核心
- 如何搭建K8S集群
江湖风云令
kubernetes容器云原生
目录一、环境规划二、环境准备2.1搭建流程概述:2.2安装环境准备2.2.1升级系统内核2.2.2设置主机名和hosts本地解析2.2.3关闭防火墙和SELinux2.2.4时间同步2.2.5关闭swap分区2.2.6将桥接的IPv4流量传递到iptables链2.2.7开启ipvs2.2.8重启机器2.3容器化环境和组件安装2.3.1Docker安装2.3.2设置Docker镜像加速器:2.3.
- 嵌入式驱动开发详解9(platform驱动)
嵌入~狮
Linux驱动驱动开发
文章目录前言platform简介总线驱动设备设备树下的platform驱动在设备树中创建设备节点编写platform驱动后续参考文献前言Linux系统要考虑到驱动的可重用性,提出了驱动的分离与分层这样的软件思路,在这个思路下诞生了我们最常打交道的platform设备驱动,也叫做平台设备驱动。platform简介在实际的驱动开发中,一般I2C主机控制器驱动已经由半导体厂家编写好了,而设备驱动一般也由
- 基于深度学习的认知架构的AI
SEU-WYL
深度学习dnn人工智能深度学习架构
基于深度学习的认知架构的AI是一类模仿人类认知过程的人工智能系统,旨在模拟人类感知、学习、推理、决策等复杂的认知功能。认知架构的目的是创建一个能够理解和处理复杂环境、实现自我学习和适应的AI系统。结合深度学习技术,这类AI可以更好地应对动态和复杂的任务需求。1.基于深度学习的认知架构的组成一个典型的基于深度学习的认知架构包含多个关键模块:感知模块:负责从外部环境中获取数据,处理和提取特征。深度学习
- linux驱动开发详解 光盘,LINUX设备驱动开发详解(附光盘)
何谨
linux驱动开发详解光盘
摘要:本书全面而详细地讲解了Linux设备驱动开发中涉及的理论以及多种设备驱动的框架.本书将字符设备,块设备,TTY设备,I2C设备,LCD设备,Flash设备,网络设备,音频设备,USB设备,PCI设备等复杂设备驱动的框架作为核心内容,讲解了大量Linux驱动开发的大量实例.并且书中还对Linux设备驱动开发环境建设,驱动的调试,驱动的移植等进行了讲解.在讲解驱动的同时,本书还给出了用户空间的验
- 人工智能:人形机器人的开发需要哪些技能?
InnoLink_1024
机器学习AGI人工智能人工智能机器人ai
人形机器人的开发需要多学科、多领域的专业技能,具体如下:机械工程技能机械设计与建模:熟练掌握计算机辅助设计(CAD)软件,如SolidWorks、AutoCAD等,能够创建精确的3D模型,进行结构分析,并为制造准备详细的图纸。材料与制造工艺:了解各种材料的性质、接合技术以及制造工艺,如铣削、车削、3D打印等,根据机器人的应用场景和性能要求,选择合适的材料和制造工艺。运动学与动力学分析:深入理解运动
- 人工智能:人形机器人的开发需求会创造哪些热门的就业岗位?
InnoLink_1024
机器学习AGI人工智能人工智能机器人ai
人形机器人的开发需求会创造以下热门的就业岗位:研发设计类机械结构工程师:负责设计人形机器人的机械本体结构,包括关节、骨架、外壳等,需要对机械原理、力学知识有深入理解,熟悉使用CAD、SolidWorks等设计软件。电子电气工程师:设计和开发人形机器人的电子电路系统,包括传感器电路、控制电路、电源电路等,需要掌握电子技术、电路设计、PCB绘制等技能。算法工程师:运动控制算法工程师:负责移动机器人运动
- Python-玩转数据-数据分析之分析思维
人猿宇宙
数据分析pythonbigdata
一、说明当下时代的社会生产发展,人们都开始习惯于用数据来说明某个观点和反映事物的内在规律或享用自动化和人工智能带来的便利。但这些轻松快捷的方便背后,都是相关工作者的专业流程作为源源不断的支撑。二、大数据思维自从几年前大数据开始兴起,大数据思维已经逐渐被更动的人接受,随着其进一步发展,产生了巨大的生产效果。三、数据驱动的生产力作为一个数据工程师,仅仅知道跑数据是不够的,还需要通过数据发现生产环节出现
- 嵌入式驱动开发详解视频教程
acp小鸡炖蘑菇
嵌入式linux驱动开发嵌入式视频
第一章+Linux设备驱动模型第二章Linux内核模块第三章Linux内核编程API第四章Linux字符设备驱动第五章Linux块设备驱动第六章Linuxplatform驱动第七章Linux触摸屏设备驱动第八章LinuxLCD设备驱动第九章LinuxALSA设备驱动第十章LinuxI2C和SPI设备驱动第十一章Linux网络设备驱动第十二章Linux内核调试第十三章ARM开发板LinuxBSP构建
- 【深入解析】棋类游戏算法:Minimax, Negamax, 蒙特卡洛树搜索与AlphaZero
wit_@
aipythonnegamax
深入解析棋类游戏算法:Minimax,Negamax,蒙特卡洛树搜索与AlphaZero在人工智能领域,棋类游戏一直是测试和展示智能算法的经典舞台。从最早的Minimax算法到如今的AlphaZero,这些算法通过不同的方式解决了棋局中的决策问题,让计算机能够在复杂的棋局中做出合理甚至超越人类的决策。本文将详细解析几种经典的棋类游戏算法:Minimax,Negamax,蒙特卡洛树搜索(MCTS)以
- 什么是AI显卡,英伟达与AMD显卡的全面对比
wit_@
人工智能python算法deeplearning大数据网络
什么是AI显卡?AI显卡是专门为人工智能计算任务设计和优化的图形处理器(GPU)。相比传统显卡,AI显卡具备更强的计算能力、更高的并行处理效率以及针对深度学习、数据科学等领域的特殊硬件支持。在人工智能领域,尤其是深度学习中,训练和推理任务需要处理大量的矩阵运算,这正是GPU擅长的领域。AI显卡通过高度并行的架构,可以显著提升训练速度和模型性能,同时降低功耗和延迟。常见的AI显卡用途包括:深度学习模
- 详解AI大模型的主要指标与国内常见大模型对比分析
wit_@
人工智能AIGC语言模型ai大数据服务器
AI大模型的主要指标与国内常见大模型对比分析随着人工智能技术的快速发展,大模型(LargeAIModels)在自然语言处理、计算机视觉和多模态任务中取得了突破性进展。对于选择和评价AI大模型,不仅需要关注其功能,还要理解其关键指标和性能表现。本文将详细分析AI大模型的主要评价指标,并对国内常见大模型进行具体对比,提供实际数值和深度解析。一、AI大模型的主要指标AI大模型的性能和实用性通常通过以下指
- 【Linux】SSH:远程连接
T0uken
linuxssh网络
基础配置与连接修改配置SSH的配置文件通常位于/etc/ssh/sshd_config。可以通过以下命令编辑:sudovi/etc/ssh/sshd_config常见配置选项:端口:默认是22,可以通过修改Port选项更改SSH服务的监听端口,增强安全性。允许的用户:使用AllowUsers选项可以指定哪些用户有权限通过SSH登录,从而限制访问。禁用root登录:通过设置PermitRootLog
- Python人工智能在气象中的应用,包括:天气预测、气候模拟、降雨量和降水预测、气象数据分析、气象预警系统
xiao5kou4chang6kai4
气象气候预报天气预测气候模拟.降雨量和降水预测气象数据分析气象预警系统python
Python人工智能在气象中有多种应用,包括:天气预测、气候模拟、降雨量和降水预测、气象数据分析、气象预警系统Python是功能强大、免费、开源,实现面向对象的编程语言,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能,这些优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Python将成为的主流编程语言之一。人工智
- 深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术
wit_@
cnnpython机器学习深度学习scikit-learn
深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术导语卷积神经网络(CNN)是现代深度学习领域中最重要的模型之一,特别在计算机视觉(CV)领域具有革命性的影响。无论是图像分类、目标检测,还是人脸识别、语音处理,CNN都发挥了举足轻重的作用。随着技术的不断发展,CNN已经成为了解决众多实际问题的核心工具。但对于许多人来说,CNN仍然是一个相对复杂的概念,尤其是初学者可能会被其背后的数学原
- 从零开始的 AI Infra 学习之路
SSS不知-道
MLSys人工智能深度学习pytorch
从零开始的AIInfra学习之路文章目录从零开始的AIInfra学习之路一、概述二、AI算法应用2.1机器学习2.2深度学习2.3LLM三、AI开发体系3.1编程语言四、AI训练框架&推理引擎4.1PyTorch4.2llama.cpp4.3vLLM五、AI编译&计算架构5.1CUDA5.2CANN六、AI硬件&体系结构6.1INVIDIAGPU6.2AscendNPU一、概述AIInfra(AI
- chatgpt赋能python:Python群发微信消息:解决方案
suimodina
ChatGptpythonchatgpt微信计算机
Python群发微信消息:解决方案肆无忌惮的群发微信消息,是否是你目前所需的解决方案?如果是,那么你来对地方了。Python是一门十分强大的编程语言,广泛用于各种人工智能、计算机视觉、机器学习等领域。Python可以用于开发各种应用程序,它也可以用于批量处理和发送微信消息。本文将概述如何用Python发送微信消息。我们将介绍用Python实现微信消息的流程和步骤,并提供一些有关如何使用Python
- Centos7.9 离线安装docker
有谁看见我的剑了?
dockerdocker容器运维
实验环境:[root@192~]#cat/etc/system-releaseCentOSLinuxrelease7.9.2009(Core)下载二进制压缩包a.官网下载地址:https://download.docker.com/linux/static/stable/x86_64/b.阿里云下载地址https://mirrors.aliyun.com/docker-ce/linux/stati
- 【深度学习】Huber Loss详解
小小小小祥
深度学习人工智能算法职场和发展机器学习
文章目录1.HuberLoss原理详解2.Pytorch代码详解3.与MSELoss、MAELoss区别及各自优缺点3.1MSELoss均方误差损失3.2MAELoss平均绝对误差损失3.3HuberLoss4.总结4.1优化平滑4.2梯度较好4.3为什么说MSE是平滑的1.HuberLoss原理详解HuberLoss是一种结合了MSE(均方误差)与MAE(平均绝对误差)的损失函数,旨在克服两者的
- 【YOLOV8】YOLOV8模型训练train及参数详解
小小小小祥
YOLO
介绍训练深度学习模型涉及为其提供数据并调整其参数,以便它能够做出准确的预测。UltralyticsYOLOv8的训练模式专为有效、高效地训练目标检测模型而设计,充分利用现代硬件的能力。本指南旨在涵盖使用YOLOv8强大功能集训练自定义模型所需的所有细节,帮助你快速入门。为什么选择UltralyticsYOLO进行训练?高效性:无论是单GPU设置还是跨多个GPU扩展,都能充分利用你的硬件。多功能性:
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比